Skip to main content
Log in

Effect of air gap interval on polyvinylidene fluoride hollow fiber membrane spinning for CO2 and CH4 gas separation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Improper control of air gap interval during hollow fiber membranes (HFMs) spinning may lead to structural defects such as inner lumen deformations and macrovoids. In the current work, PVDF HFMs were prepared by manipulating air gap intervals at 5, 10, 15, 20, and 25 cm, using dry-wet spinning mechanism. The changes in its properties, including contact angle, mechanical strength, and most importantly the morphological structure that is usually crucial for gas separation performance have been determined. The morphology was evaluated using SEM, and the inner lumen defects of HFMs were reduced with the increment of air gap interval during the spinning process. Subsequently, the CO2 gas permeance was observed to increase from 5 to 15 cm air gap distance and almost constant at 20 cm air gap interval, then increase tremendously beyond this point. Furthermore, CO2/CH4 ideal selectivity was observed to be improved and reached the highest end at PVDF-AG15 and dropped beyond this point. Therefore, varying air gap distance is considered as a practical approach for better gas separation. However, macrovoids will form if the air gap length is overlong. Thus, optimum air gap length during PVDF HFMs spinning is vital for morphology and gas separation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Awad and I. H. Aljundi, Korean J. Chem. Eng., 35, 1700 (2018).

    Article  CAS  Google Scholar 

  2. M. Mubashir, Y. F. Yeong, T. L. Chew and K. K. Lau, Sep. Purif. Technol., 215, 32 (2019).

    Article  CAS  Google Scholar 

  3. L. Ma, F. Svec, T. Tan and Y. Lv, ACS Appl. Nano Mater., 1, 2808 (2018).

    Article  CAS  Google Scholar 

  4. L. Meng, X. Zou, S. Guo, H. Ma, Y. Zhao and G. Zhu, ACS Appl. Mater. Interfaces, 7, 15561 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. M. Mubashir, Y. Y. Fong, C. T. Leng and L. K. Keong, Chem. Eng. Technol., 41, 235 (2018).

    Article  CAS  Google Scholar 

  6. Z. Qiao, Q. Xu and J. Jiang, J. Membr. Sci., 551, 47 (2018).

    Article  CAS  Google Scholar 

  7. A. Jamil, O. P. Ching, T. Iqbal, S. Rafiq, M. Zia-Ul-Haq, M. Z. Shahid, M. Mubashir, S. Manickam and P. L. Show, J. Hazard. Mater., 41, 126000 (2021).

    Article  CAS  Google Scholar 

  8. S. Shahid, G. V. Baron, J. F. M. Denayer, J. A. Martens, L. H. Wee and I. F. J. Vankelecom, J. Membr. Sci., 620, 118943 (2021).

    Article  CAS  Google Scholar 

  9. A. Shakoor, A. L. Khan, P. Akhter, M. Aslam, M. R. Bilad, I. M. Maafa, K. Moustakas, A. S. Nizami and M. Hussain,, Environ. Sci. Pollut. Res., 28, 12397 (2021).

    Article  CAS  Google Scholar 

  10. X. Chen, Asian Philos, 27, 1 (2017).

    Article  Google Scholar 

  11. L. Hu, J. Cheng, Y. Li, J. Liu, J. Zhou and K. Cen, J. Appl. Polym. Sci., 135, 45765 (2018).

    Article  CAS  Google Scholar 

  12. H. Pang, H. Gong, M. Du, Q. Shen and Z. Chen, Sep. Purif. Technol., 191, 38 (2018).

    Article  CAS  Google Scholar 

  13. Y. Tang, Y. Lin, H. Lin, C. Li, B. Zhou and X. Wang, Membranes (Basel), 10, 1 (2020).

    Google Scholar 

  14. W. Li, Prog. Mater. Sci., 100, 21 (2019).

    Article  Google Scholar 

  15. N. Peng, N. Widjojo, P. Sukitpaneenit, M. M. Teoh, G. G. Lipscomb, T.-S. Chung and J.-Y. Lai, Prog. Polym. Sci., 37, 1401 (2012).

    Article  CAS  Google Scholar 

  16. L. Shi, R. Wang, Y. Cao, C. Feng, D. T. Liang and J. H. Tay, J. Membr. Sci., 305, 215 (2007).

    Article  CAS  Google Scholar 

  17. W. Li, P. Su, G. Zhang, C. Shen and Q. Meng, J. Membr. Sci., 495, 384 (2015).

    Article  CAS  Google Scholar 

  18. S. Bonyadi, T. S. Chung and W. B. Krantz, J. Membr. Sci., 299, 200 (2007).

    Article  CAS  Google Scholar 

  19. X. Zhang, Y. Wen, Y. Yang and L. Liu, J. Macromol. Sci. B, 47, 1039 (2008).

    Article  CAS  Google Scholar 

  20. A. L. Ahmad and Z. M. H. Mohd Shafie, J. Phys. Sci., 28, 185 (2017).

    Article  CAS  Google Scholar 

  21. M. Mubashir, Y. F. Yeong, K. K. Lau and T. L. Chew, Polym. Test., 73, 1 (2019).

    Article  CAS  Google Scholar 

  22. S.-H. Pak, Y.-W. Jeon, M.-S. Shin and H. C. Koh, Environ. Eng. Sci., 33, 17 (2016).

    Article  CAS  Google Scholar 

  23. S. S. Hosseini, N. Peng and T. S. Chung, J. Membr. Sci., 349, 156 (2010).

    Article  CAS  Google Scholar 

  24. A. Huang and B. Feng, J. Membr. Sci., 548, 59 (2018).

    Article  CAS  Google Scholar 

  25. Y.-w. You, C.-f. Xiao, Q.-l. Huang, Y. Huang, C. Wang and H.-l. Liu, RSC Adv., 8, 102 (2018).

    Article  CAS  Google Scholar 

  26. H. Zhu, X. Jie, L. Wang, G. Kang, D. Liu and Y. Cao, RSC Adv., 6, 69124 (2016).

    Article  CAS  Google Scholar 

  27. C. H. Loh and R. Wang, J. Membr. Sci., 466, 130 (2014).

    Article  CAS  Google Scholar 

  28. M. Rahbari-Sisakht, A. F. Ismail, D. Rana and T. Matsuura, J. Membr. Sci., 415, 221 (2012).

    Article  CAS  Google Scholar 

  29. Z. Wang and J. Ma, Desalination, 286, 69 (2012).

    Article  CAS  Google Scholar 

  30. F. Korminouri, M. Rahbari-Sisakht, D. Rana, T. Matsuura and A. F. Ismail, Sep. Purif. Technol., 132, 601 (2014).

    Article  CAS  Google Scholar 

  31. E. Anuar, S. M. Saufi and H. W. Yussof, Korean J. Chem. Eng., 36, 1124 (2019).

    Article  CAS  Google Scholar 

  32. F. Korminouri, M. Rahbari-Sisakht, T. Matsuura and A. F. Ismail, Chem. Eng. J., 264, 453 (2015).

    Article  CAS  Google Scholar 

  33. S. M. Rosid, H. Hasbullah, Y. Raharjo, A. F. Ismail, M. H. D. Othman, S. H. S. A. Kadir, F. Kamal, M. S. Abdullah and B. C. Ng, Mater. Today: Proc., 46, 1929 (2021).

    CAS  Google Scholar 

  34. Y.-H. Zhao, B.-K. Zhu, X.-T. Ma and Y.-Y. Xu, J. Membr. Sci., 290, 222 (2007).

    Article  CAS  Google Scholar 

  35. F. L. Huang, Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou and S. D. Jiang, Express. Polym. Lett., 4, 551 (2010).

    Article  CAS  Google Scholar 

  36. M. Chan and S. Ng, AIP Conf. Proc., 2016, 20035 (2018).

    Article  CAS  Google Scholar 

  37. H. S. Zakria, M. H. D. Othman, R. Kamaludin and A. Jilani, IOP Conf. Ser.: Mater. Sci. Eng., 1142, 12014 (2021).

    Article  CAS  Google Scholar 

  38. H. A. Tsai, D. H. Huang, S. C. Fan, Y. C. Wang, C. L. Li, K.-R. Lee and J.-Y. Lai, J. Membr. Sci., 198, 245 (2002).

    Article  CAS  Google Scholar 

  39. M. Khayet, Chem. Eng. Sci., 58, 3091 (2003).

    Article  CAS  Google Scholar 

  40. M. R. M. Abed, S. C. Kumbharkar, A. M. Groth and K. Li, J. Membr. Sci., 407, 145 (2012).

    Article  CAS  Google Scholar 

  41. B. Maity, R. K. R. A. L. Kanasan and S. Abdul Rahman, Mater. Today Proc., 41, 136 (2021).

    Article  CAS  Google Scholar 

  42. A. R. Kamble, C. M. Patel and Z. V. P. Murthy, Sep. Sci. Technol., 54, 311 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude for the financial support received from Ministry of Higher Education, Malaysia, FRGS (Ref. No. FRGS/1/2018/TK02/UTP/02/3, Cost Center 015MA0-003) and YUTP-Fundamental Research Grant (Cost Centre: 015LC0-105). In addition, the technical support provided by the CO2 Research Centre (CO2RES), Institute of Contaminant Management, is duly acknowledged.

Funding

This research was funded by the Ministry of Higher Education, Malaysia, under Fundamental Research Grant Scheme (FRGS) (Ref. No. FRGS/1/2018/TK02/UTP/02/3, Cost Center 015MA0-003) and YUTP-Fundamental Research Grant (Cost Centre: 015LC0-105).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.H.D. and P.C.O.; Methodology, S.H.D. and P.C.O.; Investigation, S.H.D.; Analysis, S.H.D. and P.C.O.; Supervision, P.C.O., and A.J.; writing—original draft, S.H.D.; writing — review and editing, S.H.D. and P.C.O.

Corresponding author

Correspondence to Pei Ching Oh.

Ethics declarations

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S.H., Oh, P.C. & Jamil, A. Effect of air gap interval on polyvinylidene fluoride hollow fiber membrane spinning for CO2 and CH4 gas separation. Korean J. Chem. Eng. 39, 2499–2504 (2022). https://doi.org/10.1007/s11814-022-1087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1087-2

Keywords

Navigation