Skip to main content
Log in

Drying characteristics of thermally pre-treated Cobra 26 F1 tomato slabs and applicability of Gaussian process regression-based models for the prediction of experimental kinetic data

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The drying characteristics of unblanched (UB), steam blanched (SB) and hot water blanched (WB) Cobra 26 F1 tomatoes were investigated at drying temperature of 40, 50, 60 and 70 °C and constant air velocity of 1.2 m/s in a convective oven. Gaussian process regression (GPR)-based models defined with squared-exponential kernel (GPR-SE), rational quadratic kernel (GPR-RQ), Matérn 5/2 kernel (GPR-M 5/2) and exponential kernel (GPR-Ex) were employed to model and predict experimental kinetic data of UB, SB and WB samples. Blanching and increased drying temperature reduced the drying time. The effective moisture diffusivity, activation energy, total and specific energy requirement for UB, SB and WB ranged between 3.6466 E-10-2.5526 E-09m2/s, 27.86`-43.65 kJ/mol, 7.08`-18.33 kW-h and 1,069.12`-2,768.80 kW-h/kg, respectively. Increased drying temperature and pre-treatment reduced activation energy, total and specific energy requirements of Cobra 26 F1 tomatoes. Investigated GPR-based models were suitable for modelling and prediction of experimental kinetic data of Cobra 26 F1 tomatoes, GPR-M 5/2 was, however, marginally better. Hence, GPR-based models showed high suitability in handling multi-dimensional drying variables and can be used for developing robust controllers applicable in auto-monitoring and control of Cobra 26 F1 tomatoes industrial drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Iyanda, A. O. Adeboye and K. A. Yusuf, An. Univ. “Efiimie Murgu”, 21, 1 (2014).

    Google Scholar 

  2. P. A. Idah, J. J. Musa, and S. T. Olaleye, AU J.T., 14, 1 (2010).

    Google Scholar 

  3. T. T. Akintunde, B. O. Akintunde and A. Fagbeja, Afr. J. Food Agric. Nutr. Dev., 11, 7 (2011).

    Google Scholar 

  4. E. K. Akpinar and S. Toraman, Heat Mass Transf., 52, 10 (2015).

    Google Scholar 

  5. L. S. Cheng, S. Fang and M. L. Ruan, Int. J. Food Eng., 11, 2 (2015).

    Article  Google Scholar 

  6. A. R. P. Kingsly, R. Singh, R. K. Goyal and D. B. Singh, Am. J. Food Technol., 2, 2 (2007).

    Article  Google Scholar 

  7. O. Adeyi, A. J. Adeyi and O. E. Oke, NSChE J., 33, 1 (2018).

    Google Scholar 

  8. F. Karimi, S. Rafiee, A. Taheri-Garavand and M. Karimi, J. Taiwan Inst. Chem. E, 43, 1 (2012).

    Article  Google Scholar 

  9. S. B. Mariem, S. B. Mabrouk and M. Khan, Int. J. Energy Eng., 4, 17 (2014).

    Google Scholar 

  10. I. Doymaz, J. Food Eng., 78, 4 (2007).

    Google Scholar 

  11. J. O. Ojediran, C. E. Okonkwo, A. J. Adeyi, O. Adeyi, A. F. Olaniran, N. E. George and A. T. Olayanju, Heliyon, 6, 3 (2020).

    Article  Google Scholar 

  12. J. B. Stamatios and G. B. Vassilios, J. Food Eng., 65, 449 (2004).

    Article  Google Scholar 

  13. T. Tunde-Akintunde, O. Oyelade and B. Akintunde, Agric. Eng. Int.: CIGR J., 16, 2 (2014).

    Google Scholar 

  14. M. Kaveh, V. R. Sharabiani, R. A. Chayjan, E. Taghinezhad, Y. Abbaspour-Gilandeh and I. Golpour, Inf. Process. Agric., 5, 3 (2018).

    Google Scholar 

  15. N. R. Sahoo, M. L. Bal, S. U. Pal and D. Sahoo, Food Technol. Biotechnol., 53, 1 (2015).

    Article  Google Scholar 

  16. S. E. Agarry, TURJAF, 4, 10 (2016).

    Google Scholar 

  17. X. Sun, X. Jin, N. Fu and X. Chen, Food Sci. Nutr., 8, 11 (2020).

    Google Scholar 

  18. U. Garba, S. Kaur, S. Gurumayum and P. Rasane, Food Technol. Biotechnol., 53, 3 (2015).

    Article  Google Scholar 

  19. P. Chaurasia, K. Younis, O. S. Qadri, G. Srivastava and K. Osama, J. Food Process Eng., 42, 2 (2019).

    Article  Google Scholar 

  20. Y. Tao, Y. Li, R. Zhou, D. T. Chu, L. Su, Y. Han and J. Zhou, J. Food Sci. Technol., 53, 10 (2016).

    Article  Google Scholar 

  21. S. M. Jafari, M. Ganje, D. Dehnad and V. Ghanbari, J. Food Process. Preserv., 40, 2 (2016).

    Article  Google Scholar 

  22. L. Zhou, J. Chen and Z. Song, Math Probl Eng., 2015, 1 (2015).

    Google Scholar 

  23. C. Lin, T. Li, S. Chen, X. Liu, C. Lin and S. Liang, Neural Comput. Appl., 31, 12 (2019).

    Google Scholar 

  24. S. Shabani, S. Samadianfard, M. T. Sattari, A. Mosavi, S. Shamshirband, T. Kmet and A. R. Várkonyi-Kóczy, Atmosphere, 11, 1 (2020).

    Article  Google Scholar 

  25. H. Tolba, N. Dkhili, J. Nou, J. Eynard, S. Thil and S. Grieu, IFACPapersOnLine, 52, 4 (2019).

    Google Scholar 

  26. O. A. Aregbesola, B. S. Ogunsina, A. E. Sofolahan and N. N. Chime, Niger. Food J., 33, 1 (2015).

    Article  Google Scholar 

  27. T. Y. Tunde-Akintunde, J. Food Process. Preserv., 38, 4 (2014).

    Article  Google Scholar 

  28. A. M. Kotlar, B. V. Iversen and Q. de Jong van Lier, Vadose Zone J., 18, 1 (2019).

    Google Scholar 

  29. M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen and A. R. Figueiras-Vidal, J. Mach. Learn. Res., 11, 1865 (2010).

    Google Scholar 

  30. İ. Doymaz and P. Altıner, Food Sci. Biotechnol., 21, 1 (2012).

    Article  Google Scholar 

  31. A. S. Kipcak, Int. J. Therm. Eng., 4, 1 (2018).

    Google Scholar 

  32. J. Ni, C. Ding, Y. Zhang and Z. Song, Innov. Food Sci. Emerg. Technol., 61, 102318 (2020).

    Article  CAS  Google Scholar 

  33. E. E. Abano, H. Ma, W. Qu and E. Teye, Afr. J. Food Sci., 5, 7 (2011).

    Google Scholar 

  34. A. D. Ho and C. C. Yu, Educ Psychol Meas., 75, 3 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oladayo Adeyi.

Additional information

Declaration of Competing Interest

Authors have no conflicts of interest to declare.

This work did not receive any funds either from public, commercial or not-for-profit grant agencies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyi, O., Oke, E.O., Adeyi, A.J. et al. Drying characteristics of thermally pre-treated Cobra 26 F1 tomato slabs and applicability of Gaussian process regression-based models for the prediction of experimental kinetic data. Korean J. Chem. Eng. 39, 1135–1145 (2022). https://doi.org/10.1007/s11814-021-1032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1032-9

Keywords

Navigation