Skip to main content
Log in

Electrochemical performance of graphite/silicon/pitch anode composite prepared by metal etching process

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The electrochemical characteristics of graphite/silicon/pitch composites were investigated as anode material in lithium ion batteries. The anode materials were prepared with etched graphite using nickel chloride hexahydrate. Scanning electron microscopy, x-ray diffraction and thermogravimetric analysis were used to analyze the physical properties of graphite/silicon/pitch composites. The electrochemical characteristics of the batteries were investigated by charge-discharge cycle, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy tests in the eletrolyte of 1.0 M LiPF6 (EC:DMC:DEC=1:1:1vol%). Graphite/silicon/pitch electrode showed better electrochemical properties than the graphite electrode, and even nickel etched graphite was superior to graphite. Also, it was confirmed that both capacity and rate performance are significantly improved when the ratio of graphite, silicon, and pitch is 8:1:1 (G8Si1P1). It is found that G8Si1P1 has the initial discharge capacity of 680 mAh/g, the capacity retention ratio of 90% during 100 cycles and the retention rate capability of 91% in 2 C/0.1 C, 87% in 5 C/0.1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Li, J. Lu, Z. Chen and K. Amine, Adv Mater., 30, 1800561 (2018).

    Article  Google Scholar 

  2. Z. P. Cano, D. Banham and S. Ye, Nat Energy, 3(4), 279 (2018).

    Article  Google Scholar 

  3. Y. J. Jo and J. D. Lee, Korean Chem. Eng. Res., 57(1), 5 (2019).

    CAS  Google Scholar 

  4. N. Kim, S. Chae, J. Ma M. Ko and J. Cho, Nat. Commun., 8, 1 (2017).

    Article  Google Scholar 

  5. P. Li, J. Y. Hwang and Y. K. Sun, ACS NANO, 13, 2624 (2019).

    CAS  PubMed  Google Scholar 

  6. J. Nzabahimana, P. Chang and X. Hu, J. Mater. Sci., 51, 4798 (2019).

    Article  Google Scholar 

  7. S. Y. Lee and J. D. Lee, Korean Chem. Eng. Res., 56(4), 561 (2018).

    CAS  Google Scholar 

  8. G. Y. Gor, J. Cannarella, J. H. Prévost and C. B. Arnold, J. Electrochem. Soc., 161, 3065 (2014).

    Article  Google Scholar 

  9. Y. J. Jo and J. D. Lee, Korean J. Chem. Eng., 36(10), 1724 (2019).

    Article  CAS  Google Scholar 

  10. Y. S. Yoon, S. H. Jee, S. H. Lee and S. C. Nam, Surf. Coat. Technol., 206, 553 (2011).

    Article  CAS  Google Scholar 

  11. Z. Wang, Z. Mao, L. Lai, M. Okubo, Y. Song, Y. Zhou, X. Liu and W. Huang, Chem. Eng. J., 313, 187 (2017).

    Article  CAS  Google Scholar 

  12. M. Ko, S. Chae, J. Ma, N. Kim, H. W. Lee, Y. Cui and J. Cho, Nat. Energy, 1, 16113 (2016).

    Article  CAS  Google Scholar 

  13. S. Y. Kim, J. Lee, B. H. Kim, Y. J. Kim, K. S. Yang and M. S. Park, ACS Appl. Mater. Interfaces, 8, 12109 (2016).

    Article  CAS  Google Scholar 

  14. Y. J. Jo and J. D. Lee, Korean Chem. Eng. Res., 56(3), 320 (2018).

    CAS  Google Scholar 

  15. S. H. Lee and J. D. Lee, Korean Chem. Eng. Res., 57(1), 118 (2019).

    Google Scholar 

  16. H. Cao, X. Zhou, C. Zheng and Z. Liu, Carbon, 89, 41 (2015).

    Article  CAS  Google Scholar 

  17. J. Kim, S. M. N. Jeghan and G. Lee, Micropor. Mesopor. Mater., 305, 110325 (2020).

    Article  CAS  Google Scholar 

  18. J. H. Lee W.J. Kim, J. Y. Kim, S.H. Lim and S.M. Lee, J. Power Sources, 176, 353 (2008).

    Article  CAS  Google Scholar 

  19. J. Lai, H. Guo, Z. Wang, X. Li, X. Zhang, F. Wu and P. Yue, J. Alloys Compd., 530, 30 (2012).

    Article  CAS  Google Scholar 

  20. M. Z. Jung, J. Y. Park and J. D. Lee, Korean Chem. Eng. Res., 54(1), 16 (2016).

    Article  CAS  Google Scholar 

  21. I. T. Kim, J. Lee, J. C. An, E. Jung, H. K. Lee, M. Morita and J. Shim, Int. J. Electrochem. Sci., 11, 5807 (2016).

    Article  CAS  Google Scholar 

  22. H. S. Ko, J. E. Choi and J. D. Lee, Appl. Chem. Eng., 25, 592 (2014).

    Article  CAS  Google Scholar 

  23. Q. Cheng, R. Yuge, K. Nakahara, N. Tamura and S. Miyamoto, J. Power Sources, 284, 258 (2015).

    Article  CAS  Google Scholar 

  24. N. L. Rock and P. N. Kumta, J. Power Sources, 164, 829 (2007).

    Article  CAS  Google Scholar 

  25. L. Gan, H. Guo, Z. Wang, X. Li, W. Peng, J. Wang, S. Huang and M. Su, Electrochim. Acta, 104, 117 (2013).

    Article  CAS  Google Scholar 

  26. M. J. Jung and J. D. Lee, Appl. Chem. Eng., 26, 80 (2016).

    Google Scholar 

  27. J. Xie, L. Tong, L. Su, Y. Xu, L. Wang and Y. Wang, J. Power Sources, 342, 529 (2017).

    Article  CAS  Google Scholar 

  28. J. J. Wu and W. R. Bennett, 2012 IEEE Energytech, IEEE (2012).

Download references

Acknowledgements

This research was supported by Korea Evaluation Institute of Industrial Technology (KELT) through the Carbon Cluster Construction project [10083621, Development of preparation technology in petroleum-based artificial graphite anode] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Dae Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y.J., Choi, N.H. & Lee, J.D. Electrochemical performance of graphite/silicon/pitch anode composite prepared by metal etching process. Korean J. Chem. Eng. 39, 928–933 (2022). https://doi.org/10.1007/s11814-021-1019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1019-6

Keywords

Navigation