Skip to main content

Advertisement

Log in

Hierarchical multi-metal-doped mesoporous NiO-silica nanoparticles towards a viable platform for Li-ion battery electrode application

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hierarchical nanostructures have received wide attention for their distinguished physical and chemical properties of the synthesized materials, mainly in future energy storage applications. In this study, Ni-based multi-metal doped silica mesoporous nanoflowers were prepared and characterized as a potential anode material for lithium ion batteries. A facile synthesis strategy is depicted here for Ni-based multi-metal doped silica mesoporous nanoflowers by using a CTAB surfactant and ammonia basic media in water-ethanol mixed solvent media. Ce, Al, Mn, and Co species have been chosen as other additive metals for doping in this mesostructure in order to find the enhanced electrochemical performance of the Ni-based silica. Systematic characterization of the material was performed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WA-XRD) analysis and N2 sorption, which show 500–600 nm sized particles with fine-looking nanoflower morphology and surface area in the range of 211–405 m2g−1. The initial charge/discharge capacity was found to be 1,313/178, 990/436, 1,122/234 and 1,585/689 mA h g−1 for different Ni-silica, Ni-Ce-silica, Ni-Al-silica and Ni-Co-Mn-Al-silica electrodes, respectively. The enhanced electrochemical performance for Ce doped Ni-silica compared to other mesoporous samples may be attributed to improved electrical conductivity as well as the hierarchical nanoflower-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Owusu and S. Asumadu-Sarkodie, Cogent Engineer., 3, 1167990 (2016).

    Article  Google Scholar 

  2. P. Kruger, Alternative energy resources: The quest for sustainable energy, Wiley Publications (2006).

  3. A. Sternberg and A. Bardow, Energy Environ. Sci., 8, 389 (2015).

    Article  CAS  Google Scholar 

  4. D. Nathan, O. N. Nzewi, K. C. Onuora and A. O. Abioye, Quest J. Electronics Commun. Eng. Res., 1(1), 01 (2013).

    Google Scholar 

  5. S. Ge, Y. Leng, T. Liu, R. S. Longchamps, X.-G. Yang, Y. Gao, D. Wang, D. Wang and C.-Y. Wang, Sci. Adv., 6, eaay7633 (2020).

    Article  CAS  Google Scholar 

  6. U. Eberle and R. Von Helmolt, Energy Environ. Sci., 3, 689 (2010).

    Article  CAS  Google Scholar 

  7. D. Larcher and J.-M. Tarascon, Nat. Chem., 7, 19 (2015).

    Article  CAS  Google Scholar 

  8. J. Cabana, L. Monconduit, D. Larcher and M. R. Palacín, Adv. Mater., 22, E170 (2010).

    Article  CAS  Google Scholar 

  9. G. Gao, S. Lu, B. Dong, Y. Xiang, K. Xi and S. Ding, J. Mater. Chem., 4, 6264 (2016).

    Article  CAS  Google Scholar 

  10. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes and X. Sun, Adv. Energy Mater., 6, 1502175 (2016).

    Article  Google Scholar 

  11. P. M. Ette, A. Chithambararaj, A. S. Prakash and K. Ramesha, ACS Appl. Mater. Interfaces, 12, 11511 (2020).

    Article  CAS  Google Scholar 

  12. S. Balamurugan, N. Naresh, I. Prakash and N. Satyanarayan, Appl. Surf. Sci., 535, 147677 (2021).

    Article  CAS  Google Scholar 

  13. J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, Mater. Chem. Front., 1, 1691 (2017).

    Article  CAS  Google Scholar 

  14. P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun and S.X. Dou, Energy Storage Mater., 15, 422 (2018).

    Article  Google Scholar 

  15. A. Mishra, A. Mehta, S. Basu, S. J. Malodeb, Nagaraj P. Shetti, Shyam S. Shukla, M. N. Nadagouda and T. M. Aminabhavi, Mater. Sci. Energy Technol., 1(2), 182 (2018).

    Google Scholar 

  16. N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 18(5), 252 (2015).

    Article  CAS  Google Scholar 

  17. J. Harris, R. Silk, M. Smith, Y. Dong, W-T. Chen and G. I. N. Waterhouse, ACS Omega, 5, 18919 (2020).

    Article  CAS  Google Scholar 

  18. S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song and Z. Yang, Phys. Chem. Chem. Phys., 15, 10904 (2013).

    Article  CAS  Google Scholar 

  19. M. Negahdary and H. Heli, Recent Patents on Nanotechnol., 12, 22 (2018).

    Article  CAS  Google Scholar 

  20. T. Tao, Y. Chen, Y. Chen, D. S. Fox, H. Zhang, M. Zhou, M. Raveggi, A. J. Barlow and A. M. Glushenkov, ChemPlusChem, 82, 295 (2017).

    Article  CAS  Google Scholar 

  21. P. Shende, P. Kasture and R. S. Gaud, Artif. Cells Nanomed. Biotechnol., 46(S1), S413 (2018).

    Article  Google Scholar 

  22. L. Li, M. Ye, Y. Ding, D. Xie, D. Yu, Y. Hu, H.-Y. Chen and S. Peng, J. Alloys Compounds, 812, 152099 (2020).

    Article  CAS  Google Scholar 

  23. Z. Tariq, S. U. Rehman, J. Zhang, F. K. Butt, X. Zhang, B. Cheng, S. Zahra and C. Li, Mater. Sci. Semicond. Process., 123, 105549 (2021).

    Article  CAS  Google Scholar 

  24. S. Liu, B. Shen, Y. Niu and M. Xu, J. Colloid Interface Sci., 488, 20 (2017).

    Article  CAS  Google Scholar 

  25. S.-W. Kim, D.-H. Seo, H. Gwon, J. Kim and K. Kang, Adv. Mater., 22, 5260 (2010).

    Article  CAS  Google Scholar 

  26. W. Stöber and A. Fink, J. Colloid Interface Sci., 26, 62 (1968).

    Article  Google Scholar 

  27. N. Pal, S. Im, E.-B. Cho, H. Kim and J. Park, J. Ind. Eng. Chem., 81, 99 (2020).

    Article  CAS  Google Scholar 

  28. N. Pal, E.-B. Cho and D. Kim, RSC Adv., 4, 9213 (2014).

    Article  CAS  Google Scholar 

  29. A. K. Patra, A. Dutta and A. Bhaumik, J. Hazard. Mater., 201–202, 170 (2012).

    Article  Google Scholar 

  30. S. Hao, Z. Wang and L. Chen, Mater. Des., 111, 616 (2016).

    Article  CAS  Google Scholar 

  31. S. Zhou, H. Zhao, D. Ma, S. Miao, M. Cheng and X. Bao, Z. Phys. Chem., 219, 949 (2005).

    Article  CAS  Google Scholar 

  32. W. Derafa, F. Paloukis, B. Mewafy, W. Baaziz, O. Ersen, C. Petit, G. Corbel and S. Zafeiatos, RSC Adv., 8, 40712 (2018).

    Article  CAS  Google Scholar 

  33. D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang and G. Du, Electrochim. Acta, 92, 87 (2013).

    Article  CAS  Google Scholar 

  34. Z. Favors, W. Wang, H. H. Bay, A. George, M. Ozkan and C. S. Ozkan, Sci. Rep., 4(1), 1 (2014).

    Google Scholar 

  35. M. Ma, H. Wang, S. Liang, S. Guo, Y. Zhang and X. Du, Electrochim. Acta, 256, 110 (2017).

    Article  CAS  Google Scholar 

  36. B. Varghese, M. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. Subba Rao, B. Chowdari, A. T. S. Wee, C. T. Lim and C.-H. Sow, Chem. Mater., 20(10), 3360 (2008).

    Article  CAS  Google Scholar 

  37. X. Huang, J. Tu, B. Zhang, C. Zhang, Y. Li, Y. Yuan and H. Wu, J. Power Sources, 161(1), 541 (2006).

    Article  CAS  Google Scholar 

  38. Y. Kang, Y.-H. Zhang, Q. Shi, H. Shi, D. Xue and F.-N. Shi, J. Colloid Interface Sci., 585, 705 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.-B. Cho acknowledges support of the National Research Foundation of Korea (NRF-2020R1A2C1015117). N. Pal conveys gratitude to TEQIP-III, JNTUH, Hyderabad for providing her the funding support in this work (letter no. JNTUH/TEQIP/CRS/2019/Chemistry/03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Bum Cho or Jae Su Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, N., Jo, J.W., Narsimulu, D. et al. Hierarchical multi-metal-doped mesoporous NiO-silica nanoparticles towards a viable platform for Li-ion battery electrode application. Korean J. Chem. Eng. 39, 1959–1967 (2022). https://doi.org/10.1007/s11814-021-1003-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1003-1

Keywords

Navigation