Skip to main content
Log in

Influence of degree of compaction on electrokinetic remediation of unsaturated soil

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In order to evaluate the electrokinetic process for unsaturated soil with different compacted conditions, six remolded soil samples containing the same water content (16 wt%) were compressed to obtain the various degrees of compaction (96.87% to 103.37%). All the lab-scale experiments were performed by applying a constant electrical voltage (1 V/cm). The electrical parameters related to the electrokinetic process were monitored to evaluate the influence of the soil degree of compaction on this process. The obtained results indicate that the soil compaction degree could influence the electrical current, the migration velocity of the voltage front, and the controlling mechanism of water transport during the electrokinetic processes. Followed by the initial decline, the electrical current of soil with a lower degree of compaction (96.87%) would increase at 0.7 mA/h, which was about seven times larger than that of the soil with a higher degree of compaction (103.37%). The migration velocity of voltage front in the soils increased with decreasing compaction degree. The voltage front migrated from the cathode towards the anode at 6.66 mm/h in the soil with a lower degree of compaction (96.87%). In comparison, the migration velocity decreased to 1.75 mm/h in the soil with a higher degree of compaction (103.37%). Both hydraulic and electrokinetic driving forces could influence the water transport in unsaturated soil. The results demonstrate that the catholyte entering the soil under the hydraulic gradient could be opposite to electro-osmosis. The electrokinetic driving force would be a major controlling mechanism for the unsaturated soil with a higher degree of compaction. For the soil with a lower degree of compaction, the hydraulic driving force would affect the water transport in the soil during its initial saturation period. Moreover, with the increase in soil saturation, the effects of hydraulic driving force were weakened, and the electrochemical properties of the pore solution appeared to be the dominant factor for the electrokinetic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Reddy and R. E. Saichek, J. Environ. Eng., 129, 336 (2003).

    Article  CAS  Google Scholar 

  2. P. V. Sivapullaiah and B. S. N. Prakash, J. Hazard. Mater., 143, 682 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. B. G. Ryu, S. W. Park, K. Baek and J. S. Yang, Sep. Sci. Technol., 44, 2421 (2009).

    Article  CAS  Google Scholar 

  4. K. R. Reddy, C. Cameselle and P. Ala, J. Appl. Electrochem., 40, 1269 (2010).

    Article  CAS  Google Scholar 

  5. C. Tamagnini, C. Jommi and F. Cattaneo, An. Acad Bras Cienc., 82, 169 (2010).

    Article  PubMed  Google Scholar 

  6. M. Razaee and G. Asadollahfardi, Environ. Model. Assess., 24, 235 (2019).

    Article  Google Scholar 

  7. Y. B. Acar, R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka and R. Parker, J. Hazard. Mater., 40, 117 (1995).

    Article  CAS  Google Scholar 

  8. A. T. Yeung, Cn. Hsu and R. M. Menon, J. Hazard. Mater., 55, 221 (1997).

    Article  CAS  Google Scholar 

  9. A. T. Yeung and Cn. Hsu, J. Environ. Eng., 131, 298 (2005).

    Article  CAS  Google Scholar 

  10. R. T. Gill, M. J. Harbottle, J. W. N. Smith and S. F. Thornton, Chemosphere, 107, 31 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Pañizares, V. Navarro and M. A. Rodrigo, Chemosphere, 166, 540 (2017).

    Article  PubMed  Google Scholar 

  12. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Pañizares, V. Navarro and M. A. Rodrigo, Chemosphere, 166, 549 (2017).

    Article  PubMed  Google Scholar 

  13. M. Vocciante, A. Caretta, L. Bua, R. Bagatin and S. Ferro, Chem. Eng. J., 289, 123 (2016).

    Article  CAS  Google Scholar 

  14. Y. Liu, L. Zheng and S. Rao, Adv. Mater. Sci. Eng., 2021, 6642785 (2021).

    Google Scholar 

  15. X. Li, L. Wang, X. Sun and Y. Cong, Front. Struct. Civ. Eng., 13, 1463 (2019).

    Article  Google Scholar 

  16. C. D. Cox, M. A. Shoesmith and M. M. Ghosh, Environ. Sci. Technol., 30, 1933 (1996).

    Article  CAS  Google Scholar 

  17. A. Saini, D. N. Bekele, S. Chadalavada, C. Fang and R. Naidu, Environ. Technol. Inno., 23, 101585 (2021).

    Article  CAS  Google Scholar 

  18. Q. Lu, Chemosphere, 254, 126861 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. R. Ghobadi, A. Altaee, J. L. Zhou, E. Karbassiyazdi and N. Ganbat, Sci. Total Environ., 794, 148668 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. R. Sun, W. Gong, Y. Chen, J. Hong and Y. Wang, Process Saf. Environ., 153, 117 (2021).

    Article  CAS  Google Scholar 

  21. ASTM D4186/D4186M-20e1 (2020). Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading. ASTM International, West Conshohocken, PA.

    Google Scholar 

  22. ASTM D698-12 (2021). Standard Test Methods for Laboratory Compaction of Soil Standard Effort (12,400 ft-lbf/ft3 (600kN-m/m3)). ASTM International, West Conshohocken, PA.

    Google Scholar 

  23. ASTM D1557-12 (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA.

    Google Scholar 

  24. S. Kowalczyk, M. Maślakowski and P. Tucholka, J. Appl. Geophys, 110, 43 (2014).

    Article  Google Scholar 

  25. J. Lipiec, M. Hajnos and R. Świeboda, Geoderma, 179–180, 20 (2012).

    Article  Google Scholar 

  26. Y. B. Acar and A. N. Alshawabkeh, Environ. Sci. Technol., 27, 2638 (1993).

    Article  CAS  Google Scholar 

  27. K. Tang, F. Zhang, D. Feng and X. Lu, Eng. Geol., 294, 106404 (2021).

    Article  Google Scholar 

  28. Á. Yustres, R. López-Vizcaíno, V. Cabrera and V. Navarro, E3S Web of Conferences, 195, 02003 (2020).

  29. E. D. Mattson, R. S. Bowman and E. R. Lindgren, J. Contam Hydrol., 54, 99 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Á. Yustres, R. López-Vizcaíno, C. Sáez, P. Cañizares, M. A. Rodrigo and V. Navarro, Sep. Purif. Technol., 192, 196 (2018).

    Article  CAS  Google Scholar 

  31. X. Y. Xie, Y. M. Liu and L. W. Zheng, 2018. Mar. Georesour. Geotec., 37, 1188 (2019).

    Article  Google Scholar 

  32. ASTM D4318-17e1 (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA.

    Google Scholar 

  33. ASTM D854-14 (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA.

    Google Scholar 

  34. ASTM D7503-18 (2018). Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils, ASTM International, West Conshohocken, PA.

    Google Scholar 

  35. A. F. Huweg, Ph.D Thesis, University of Southern Queensland, Queensland (2013).

    Google Scholar 

  36. ASTM G57-06 (2012). Standard Test Methods for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. ASTM International, West Conshohocken, PA.

    Google Scholar 

  37. A. T. Yeung, Cn. Hsu and R. M. Menon, J. Geotech. Geoenviron., 122, 666 (1996).

    CAS  Google Scholar 

  38. A. Z. Al-Hamdan and K. R. Reddy, Chemosphere, 71, 860 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Cn. Hsu, A. T. Yeung and R. M. Menon, Environ. Syst. Decis., 31, 33 (2011).

    Google Scholar 

  40. K. R. Reddy and S. Chinthamreddy, Waste Manage., 19, 269 (1999).

    Article  CAS  Google Scholar 

  41. K.R. Reddy, K. Darko-Kagya and A.Z. Al-Hamdan, Water Air Soil Poll., 221, 35 (2011).

    Article  CAS  Google Scholar 

  42. H. R. Roodposhti, M. K. Hafizi, M. R. S. Kermani and M. R. G. Nik, J. Appl. Geophys., 168, 49 (2019).

    Article  Google Scholar 

  43. L. Gabrieli, C. Jommi, G. Musso and E. Romero, J. Appl. Electrochem., 38, 1043 (2008).

    Article  CAS  Google Scholar 

  44. S. Y. Shin, S. M. Park and K. Baek, Water Air Soil Poll., 227, 223 (2016).

    Article  Google Scholar 

  45. M.C. Sauer, P.E. Southwick, K.S. Spiegler and M.R.J. Wylie, Ind. Eng. Chem., 47, 2187 (1955).

    Article  CAS  Google Scholar 

  46. J. D. Rhoades, N. A. Manteghi, P. J. Shouse and W. J. Alves, Soil Sci. Soc. Am. J., 53, 433 (1989).

    Article  Google Scholar 

  47. K. R. Reddy and K. Maturi, In 16 International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, Millpress Science Publishers, Rotterdam, Netherlands, 2429–2432 (2005).

    Google Scholar 

  48. S. P. Friedman, Comput. Electron. Agric., 46, 45 (2005).

    Article  Google Scholar 

  49. A. Samouëlian, I. Cousin, A. Tabbagh, A. Bruand and G. Richard, Soil Till Res., 83, 173 (2005).

    Article  Google Scholar 

  50. S. Niwas, B. Tezkan and M. Israil, Hydrogeol. J., 19, 307 (2011).

    Article  Google Scholar 

  51. G. E. Archie, Transactions of the AIME, 146, 54 (1942).

    Article  Google Scholar 

  52. S. P. Friedman, Comput. Electron. Agr., 46, 45 (2005).

    Article  Google Scholar 

  53. C. D. Shackelford and D. E. Daniel, J. Geotech. Geoenviron., 117, 467 (1991).

    Google Scholar 

  54. A. N. Alshawabkeh and Y. B. Acar, J. Environ. Sci. Heal. A, 27, 1835 (1992).

    Google Scholar 

  55. S. Wieczorek, H. Weigand, M. Schmid and C. Marb, Eng. Geol., 77, 203 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank; the Department of Educational of Liaoning Province for Key Laboratory (16-1077), Discipline Innovation Team of Liaoning Technical University (LNTU20TD-11) and National Natural Science Foundation of China (51874166) for providing funding for this work and the linguistic assistance provided by Editeg (https://www.editeg.com) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Jiang, L., Sun, K. et al. Influence of degree of compaction on electrokinetic remediation of unsaturated soil. Korean J. Chem. Eng. 39, 963–972 (2022). https://doi.org/10.1007/s11814-021-0999-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0999-6

Keywords

Navigation