Skip to main content
Log in

Optimization of UV-photografting factors in preparation of polyacrylic-polyethersulfone forward osmosis membrane using response surface methodology

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Commercial nanofiltration polyethersulfone (NF2) membrane was modified via ultraviolet (UV) photografting to prepare a high-performance forward osmosis (FO) membrane. The optimized condition of grafting parameters was obtained using central composite design (CCD) and response surface methodology (RSM). UV-photografting time and acrylic acid (AA) monomer concentration were the considered variables, while the two RSM responses were water permeate flux and reverse salt diffusion flux (RSD). Quadratic models were established between the responses and the independent parameters using analysis of variance (ANOVA). The membranes were characterized with functional group, morphology and surface roughness. The obtained optimum conditions were 2.81 min grafting time and 27.85 g/L AA monomer concentration. Under these conditions, a maximum water permeate flux of 1.52±0.04 L/m2·h was achieved with an RSD value of 10.09±0.36 g/m2·h. The optimized membrane exhibited a higher water flux compared to the unmodified NF2 membrane without any significant change of the RSD value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Acrylic Acid

AFM:

Atomic Force Microscopy

ANOVA:

Analysis of variance

CTA:

Cellulose Tri-Acetate

CCD:

Central Composite Design

DI:

Deionized

FO:

Forward Osmosis

FS:

Feed side

ICP:

Internal Concentration Polarization

MAA:

Methacrylic Acid

NF:

Nanofiltration

PES:

Polyethersulfone

PEI:

Polyethylenimine

RSM:

Response Surface Modelling

RSS:

Red Sea Salt

UV:

Ultraviolet

AL-FS:

Active Layer-Feed Side

A:

Membrane surface area [m2]

b:

Regression coefficient for coded factors

C:

Monomer concentration [g/L]

Jw :

Water permeate flux [(L/m2·h]

Y:

Predicted Response

S a :

Surface Roughness [nm]

S q :

Root mean square [nm]

S z :

Maximum peak [nm]

t:

Grafting time [min]

V:

Volume [L]

Zavg :

Average value of the height [nm]

Z i :

Current height [nm]

α :

Axial point

g:

Regression coefficient for actual factors

References

  1. L. Chekli, S. Phuntsho, J. E. Kim, J. Kim, J. Y. Choi, J.-S. Choi, S. Kim, J. H. Kim, S. Hong, J. Sohn and H. K Shon, J. Membr. Sci., 497, 430 (2016).

    Article  CAS  Google Scholar 

  2. W. Wang, Y. Guo, M. Liu, X. Song and J. Duan, Korean J. Chem. Eng., 37, 1573 (2020).

    Article  CAS  Google Scholar 

  3. C. Bae, K. Park, H. Heo and D. R. Yang, Korean J. Chem. Eng., 34, 844 (2017).

    Article  CAS  Google Scholar 

  4. Z. Zhou, J. Y. Lee and T.-S. Chung, Chem. Eng. J., 249, 236 (2014).

    Article  CAS  Google Scholar 

  5. W. Xu, Q. Chen and Q. Ge, Desalination, 419, 101 (2017).

    Article  CAS  Google Scholar 

  6. S. Dutta, P. Dave and K. Nath, J. Wat. Proc. Eng., 33, 101092 (2020).

    Article  Google Scholar 

  7. J. T. Arena, S. S. Manickam, K. K. Reimund, B. D. Freeman and J. R. McCutcheon, Desalination, 343, 8 (2014).

    Article  CAS  Google Scholar 

  8. J. Wei, C. Qiu, C. Y. Tang, R. Wang and A. G. Fane. J. Membr. Sci., 372(1–2), 292 (2011).

    Article  CAS  Google Scholar 

  9. X. Wang, E. Duitsman, N. Rajagopalan and V. V. Namboodiri, Desalination, 319, 66 (2013).

    Article  CAS  Google Scholar 

  10. W. N. A. S. Abdullah, W. J. Lau, F. Aziz, D. Emadzadeh and A. F. Ismail, Chem. Eng. Technol., 41, 303 (2018).

    Article  CAS  Google Scholar 

  11. G. Blandin, D. T. Myat, A. R. D. Verliefde and P. Le-Clech, J. Membr. Sci., 533, 250 (2017).

    Article  CAS  Google Scholar 

  12. S. O. Alaswad, S. A. E. Alpay and A. O. Sharif, J. Chem. Eng. Process Technol., 09, 1 (2018).

    Article  Google Scholar 

  13. S. Jafarinejad, H. Park, H. Mayton, S. L. Walker and S. C. Jiang, Environ. Sci.: Water Res. Technol., 5, 246 (2019).

    CAS  Google Scholar 

  14. A. F. H. Abdul Rahman and M. N. Abu Seman, J. Env. Chem. Eng., 6, 4368 (2018).

    Article  CAS  Google Scholar 

  15. M. Pardeshi and A. A. Mungray. Sci. Rep., 9, 1937 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. J. Zhou, W. Li, J.-S. Gu, H.-Y. Yu, Z.-Q. Tang and X.-W. Wei, Sep. Purif. Technol., 71, 233 (2010).

    Article  CAS  Google Scholar 

  17. J. Garcia-Ivars, M.-I. Iborra-Clar, M.-I. Alcaina-Miranda, J.-A. Mendoza-Roca and L. Pastor-Alcañiz, Chem. Eng. J., 283, 231 (2016).

    Article  CAS  Google Scholar 

  18. M. N. Abu Seman, M. Khayet, Z. I. Bin Ali and N. Hilal, J. Membr. Sci., 355(1–2), 133 (2010).

    Article  CAS  Google Scholar 

  19. M. N. Abu Seman, M. Khayet and N. Hilal, Desalination, 287, 19 (2012).

    Article  CAS  Google Scholar 

  20. P. D. Peeva, T. Pieper and M. Ulbricht, J. Membr. Sci., 362(1–2), 560 (2010).

    Article  CAS  Google Scholar 

  21. J. Pieracci, J. V. Crivello and G. Belfort, Chem. Mater., 14(1), 256 (2002).

    Article  CAS  Google Scholar 

  22. A. Rahimpour, Desalination, 265(1–3), 93 (2011).

    Article  CAS  Google Scholar 

  23. M. Taniguchi and G. Belfort, J. Membr. Sci., 231(1–2), 147 (2004).

    Article  CAS  Google Scholar 

  24. Y. T. Chung, L. Y. Ng and A. W. Mohammad, J. Ind. Eng. Chem., 20(4), 1549 (2014).

    Article  CAS  Google Scholar 

  25. Y. Mansourpanah and E. Momeni Habili, J. Membr. Sci., 430, 158 (2013).

    Article  CAS  Google Scholar 

  26. H. Yamagishi, J. V. Crivello and G. Belfort, J. Membr. Sci., 105(3), 237 (1995).

    Article  CAS  Google Scholar 

  27. L. Y. Ng, A. L. Ahmad and A. W. Mohammad, Arabian J. Chem., 10, S1821 (2017).

    Article  CAS  Google Scholar 

  28. C. Zhao, J. Xue, F. Ran and S. Sun, Prog. Mat. Sci., 58(1), 76 (2013).

    Article  CAS  Google Scholar 

  29. M. Ulbricht, Polymer, 47(7), 2217 (2006).

    Article  CAS  Google Scholar 

  30. M. Khayet, C. Cojocaru and G. Zakrzewska-Trznadel, J. Membr. Sci., 321(2), 272 (2008).

    Article  CAS  Google Scholar 

  31. M. Khayet, J. Sanmartino, M. Essalhi, M. García-Payo and N. Hilal, Solar Energy, 137, 290 (2016).

    Article  Google Scholar 

  32. A. Solouk, M. Solati-Hashjin, S. Najarian, H. Mirzadeh and A. M. Seifalian, Iran Polym. J., 20, 91 (2011).

    CAS  Google Scholar 

  33. I. Xiarchos, A. Jaworska and G. Zakrzewska-Trznadel, J. Membr. Sci., 321(2), 222 (2008).

    Article  CAS  Google Scholar 

  34. D. Podstawczyk, A. Witek-Krowiak, A. Dawiec and A. Bhatnagar, Eco. Eng., 83, 364 (2015).

    Article  Google Scholar 

  35. F. Xiangli, W. Wei, Y. Chen, W. Jin and N. Xu, J. Membr. Sci., 311(1), 23 (2008).

    Article  CAS  Google Scholar 

  36. B. Deng, J. Li, Z. Hou, S. Yao, L. Shi, G. Liang and K. Sheng, Rad. Phy. Chem., 77(7), 898 (2008).

    Article  CAS  Google Scholar 

  37. O. N. Tretinnikov, V. V. Pilipenko and S. P. Firsov, Polym. Sci., Ser. B, 53(3–4), 171 (2011).

    Article  CAS  Google Scholar 

  38. V. Vatanpour, M. Esmaeili, M. Safarpour, A. Ghadimi and J. Adabi, React. Funct. Polym., 134, 74 (2019).

    Article  CAS  Google Scholar 

  39. Z. W. Heng, W. C. Chong, Y. L. Pang and C. H. Koo, Mater. Today Proceedings, 46(5), 1901 (2021).

    Article  CAS  Google Scholar 

  40. B. Van der Bruggen, J. Appl. Pol. Sci., 114(1), 630 (2009).

    Article  CAS  Google Scholar 

  41. A. A. Abuhabib, A. W. Mohammad, N. Hilal, R. A. Rahman and A. H. Shafie, Desalination, 295, 16 (2012).

    Article  CAS  Google Scholar 

  42. J. Y. Law and A. W. Mohammad, Jurnal Teknologi (Sciences and Engineering), 79(5–3), 47 (2017).

    Google Scholar 

  43. J. Y. Law and A. W. Mohammad, J. Ind. Eng. Chem., 51, 264 (2017).

    Article  CAS  Google Scholar 

  44. J. Y. Li, Z. Y. Ni, Z. Y. Zhou, Y. X. Hu, X. H. Xu and L. H. Cheng, J. Membr. Sci., 552, 213 (2018).

    Article  CAS  Google Scholar 

  45. L. Puro, M. Mänttäri, A. Pihlajamäki and M. Nyström, Chem. Eng. Res. Des., 84(2), 87 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Universiti Malaysia Pahang under the Postgraduate Research Grant Scheme (PGRS180389), the Fundamental Research Grant Scheme (FRGS/1/2016/TK02/UMP/02/8; RDU160127), the Ministry of Higher Education, Malaysia for the PhD scholarship of Ahmad Fikri Hadi Abdul Rahman, and the support of the Spanish Ministry of Economy and Competitiveness through its project CTM2015-65348-C2-2-R and the Spanish Ministry of Science, Innovation and Universities through its project RTI2018-096042-B-C22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazrul Nizam Abu Seman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.F.H.A., Khushairi, Z.A., Seman, M.N.A. et al. Optimization of UV-photografting factors in preparation of polyacrylic-polyethersulfone forward osmosis membrane using response surface methodology. Korean J. Chem. Eng. 38, 2313–2323 (2021). https://doi.org/10.1007/s11814-021-0881-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0881-6

Keywords

Navigation