Skip to main content
Log in

Predictive Model for Polysulfone Membrane Reinforced with Gum Arabic and Biogenic Zinc Oxide Nanoparticles Using CCD Response Surface Methodology for Membrane Performance Enhancement

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was used to find the best ratio in preparing the polysulfone (PSf) ultrafiltration (UF) membranes via phase inversion. The central composite design was used to make predictive regression models and study the effects of different parameters, such as the concentration of PSf polymer, the concentration of gum Arabic (GA), and the content of biosynthesized zinc oxide nanoparticles, on water flux, rejection, and porosity. Twenty tests were done to build a quadratic model, and the membranes were evaluated with scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle measurements. Using a Lab-scale cross-flow filtering device, performance testing was undertaken. The variance analysis showed that all three independent parameters were statistically important, and the model made from them was pretty good. To explain the regression equations, response surfaces, and outlines were plotted. The best experimental conditions were evaluated for water permeation flux, rejection, and porosity. The best parameters led to a maximum permeation flow of 381.5 L m−2 h−1, a rejection of 54%, and a porosity of 85.1%. With R2 values of more than 90%, the correlation between the measured and predicted values of pure water flux, rejection, and porosity values of the membranes validates the model’s correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data on the predictive model using response surface methodology for membrane performance enhancement that support the findings of this study are included within this paper and its Supplementary Information files.

References

  1. Adeloju SB, Khan S, Patti AF (2021) Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities—a review. Appl Sci (Switzerland) 11(4):1–25

    Google Scholar 

  2. Mishra RK (2023) Fresh water availability and it’s global challenge. J Mar Sci Res 2(1):01–03

    ADS  MathSciNet  Google Scholar 

  3. Warsinger DM et al (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81(May):209–237

    Article  CAS  Google Scholar 

  4. Ahmad NNR, Ang WL, Leo CP, Mohammad AW, Hilal N (2021) Current advances in membrane technologies for saline wastewater treatment: a comprehensive review. Desalination 517(April):115170–115170

    Article  CAS  Google Scholar 

  5. Goh PS, Wong KC, Ismail AF (2022) Membrane technology: a versatile tool for saline wastewater treatment and resource recovery. Desalination 521:115377–115377

    Article  CAS  Google Scholar 

  6. Yadav D, Karki S, Ingole PG (2022) Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J Environ Chem Eng 10(4):108109–108109

    Article  CAS  Google Scholar 

  7. Johnson DJ, Hilal N (2022) Nanocomposite nanofiltration membranes: state of play and recent advances. Desalination 524:115480–115480

    Article  CAS  Google Scholar 

  8. Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A (2022) A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 289:132867–132867

    Article  CAS  PubMed  Google Scholar 

  9. Yu S et al (2021) Recent advances in metal–organic framework membranes for water treatment: a review. Sci Total Environ 800:149662–149662

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Agrawal A, Sharma A, Awasthi KK, Awasthi A (2021) Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment. Mater Today Chem 21:100532–100532

    Article  CAS  Google Scholar 

  11. Al Harby NF, El-Batouti M, Elewa MM (2022) Prospects of polymeric nanocomposite membranes for water purification and scalability and their health and environmental impacts: a review. Nanomaterials 12(20):1

    Article  Google Scholar 

  12. Mazari SA et al (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges—a review. J Environ Chem Eng 9(2):105028–105028

    Article  CAS  Google Scholar 

  13. Shah T, Basri H, Bahjat Ali M (2021) Boswellia sacra leaf extract mediated biosynthesis of ZnO nanoparticles: characterization, photocatalytic and antibacterial activity. Int J Innov Res Phys 2(4):22–36

    Article  Google Scholar 

  14. Baig N, Matin A, Faizan M, Anand D, Ahmad I, Khan SA (2022) Antifouling low-pressure highly permeable single step produced loose nanofiltration polysulfone membrane for efficient Erichrome Black T/divalent salts fractionation. J Environ Chem Eng 10(4):108166–108166

    Article  CAS  Google Scholar 

  15. Lu C, Bao Y, Huang JY (2021) Fouling in membrane filtration for juice processing. Curr Opin Food Sci 42(January):76–85

    Article  CAS  Google Scholar 

  16. Yeszhanov AB, Korolkov IV, Dosmagambetova SS, Zdorovets MV, Güven O (2021) Recent progress in the membrane distillation and impact of track-etched membranes, pp 1–28

  17. Khan T, Chauhan A (2022) Chapter 6-Polymer-based bionanomaterials for biomedical applications. In: Barhoum A, Jeevanandam J, Danquah MKBTBEAOB (eds) Micro and nano technologies. Elsevier, London, pp 187–225

    Google Scholar 

  18. Samarth NB, Mahanwar PA (2021) Degradation of polymer and elastomer exposed to chlorinated water—a review, pp 1–50

  19. Shalaby MS, Sołowski G, Abbas W (2021) Recent aspects in membrane separation for oil/water emulsion. Adv Mater Interfaces 8(20):2100448–2100448

    Article  CAS  Google Scholar 

  20. Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J (2013) Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J Membr Sci 436:163–173

    Article  CAS  Google Scholar 

  21. Majumdar R, Mishra U, Bhunia B (2022) Advanced functional membranes for microfiltration and ultrafiltration

  22. Awad ES, Sabirova TM, Tretyakova NA, Alsalhy QF, Figoli A, Salih IK (2021) A mini-review of enhancing ultrafiltration membranes (Uf) for wastewater treatment: performance and stability. Chem Eng 5(3):1

    Google Scholar 

  23. Pemfcs FC, A AA (2022) Recent advancements in polysulfone based membranes for

  24. Chinedu S et al (2020) Journal of water process engineering recent development in modification of polysulfone membrane for water treatment application. J Water Process Eng 2020(November):101835–101835

    Google Scholar 

  25. Nemade PR, Ganjare AV, Ramesh K, Rakte DM, Vaishnavi V, Thapa G (2020) Journal of water process engineering low fouling sulphonated carbon soot-polysulphone membranes for rapid dehydration of stabilized oil–water emulsions. J Water Process Eng 38(July):101590–101590

    Article  Google Scholar 

  26. Batouti ME, Alharby NF, Elewa MM (2022) Review of new approaches for fouling mitigation in membrane separation processes in water treatment applications

  27. Ricci C, Koch K (2021) Biofouling in membrane distillation applications—a review, 516(June)

  28. Murugesan VP et al (2022) Modeling and multi-objective optimization of parameters in fabrication and performance analysis of polyvinylidene fluoride spiral-wound membrane modules. Polym Bull 2022:1

    Google Scholar 

  29. Rashid KT et al (2022) Novel water-soluble poly(terephthalic-co-glycerol-g-fumaric acid) copolymer nanoparticles harnessed as pore formers for polyethersulfone membrane modification: permeability-selectivity tradeoff manipulation. Water (Switzerland) 14(9):1

    Google Scholar 

  30. Romay M, Diban N, Rivero MJ, Urtiaga A, Ortiz I (2020) Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes (catalysts)

  31. Wang D-M, Venault A, Lai J-Y (2021) Chapter 2—Fundamentals of nonsolvent-induced phase separation. In: Chung T-S, Feng YBTHFM (eds) Elsevier, London, pp 13–56

  32. Chai PV, Choy PY, Teoh WC, Mahmoudi E, Ang WL (2021) Graphene oxide based mixed matrix membrane in the presence of eco-friendly natural additive gum Arabic. J Environ Chem Eng 9(4):105638–105638

    Article  CAS  Google Scholar 

  33. Manawi Y, Kochkodan V, Mahmoudi E, Johnson DJ, Mohammad AW, Atieh MA (2017) Characterization and separation performance of a novel polyethersulfone membrane blended with Acacia Gum. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  34. Manawi Y, Kochkodan V, Mohammad AW, Ali Atieh M (2017) Arabic gum as a novel pore-forming and hydrophilic agent in polysulfone membranes. J Membr Sci 529:95–104

    Article  CAS  Google Scholar 

  35. Najjar A, Sabri S, Al-Gaashani R, Atieh MA, Kochkodan V (2019) Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and arabic gum. Membranes 9(2):1

    Article  Google Scholar 

  36. Aji MM, Narendren S, Purkait MK, Katiyar V (2020) Biopolymer (gum arabic) incorporation in waste polyvinylchloride membrane for the enhancement of hydrophilicity and natural organic matter removal in water. J Water Process Eng 38(June):101569–101569

    Article  Google Scholar 

  37. Al-Baadani HH, Al-Mufarrej SI, Al-Garadi MA, Alhidary IA, Al-Sagan AA, Azzam MM (2021) The use of gum Arabic as a natural prebiotic in animals: a review. Animal Feed Sci Technol 274(February):1

    Google Scholar 

  38. Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S (2021) Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull 78(8):4699–4719

    Article  Google Scholar 

  39. Mohamed NK, Kochkodan V, Zekri A, Ahzi S (2020) Polysulfone membranes embedded with halloysites nanotubes: preparation and properties. Membranes 10(1):1

    CAS  Google Scholar 

  40. Nadir I et al (2020) Cannabinoids and terpenes as an antibacterial and antibiofouling promotor for PES water filtration membranes. Molecules 25(3):1–16

    Article  ADS  Google Scholar 

  41. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva-Crespo J (2020) Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustain Chem Pharmacy 15:1–36

    Google Scholar 

  42. Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MC (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28(2):47–56

    Article  CAS  Google Scholar 

  43. Oun AA, Shankar S, Rhim JW (2020) Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 60(3):435–460

    Article  CAS  PubMed  Google Scholar 

  44. Raha S, Ahmaruzzaman M (2022) ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv 4(8):1868–1925

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheikh M et al (2020) Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem Eng J 391:123475–123475

    Article  CAS  Google Scholar 

  46. Noah NM, Ndangili PM (2021) Nanocomposite materials for water purification: synthesis, characterization, and applications. Spectrosc Mach Learn Water Qual Anal 2021:1–4

    Google Scholar 

  47. Vatanpour V, Nekouhi GN, Esmaeili M (2020) Preparation, characterization and performance evaluation of ZnO deposited polyethylene ultrafiltration membranes for dye and protein separation. J Taiwan Inst Chem Eng 114(October):153–167

    Article  CAS  Google Scholar 

  48. Liu L et al (2020) Facile preparation PCL/modified nano ZnO organic–inorganic composite and its application in antibacterial materials. J Polym Res 27(3):1

    Article  Google Scholar 

  49. Murthy S, Effiong P, Fei CC (2020) Metal oxide nanoparticles in biomedical applications. In: Metal oxide powder technologies: fundamentals, processing methods and applications. INC, pp 233–251

  50. Abazari M, Mahdavi H (2022) Synthesis and application of MoS2 quantum dots-decorated ZnO nanoparticles for the fabrication of loose nanofiltration membranes with improved filtration, anti-fouling, and photocatalytic performance. Chem Eng Res Des 185:391–406

    Article  CAS  Google Scholar 

  51. Dama NK, Szymczyk A, Tamsa AA, Tchatchueng B (2019) Preparation and characterization of PES-based membranes: impact of the factors using a central composite an experimental design. Int J Chem Chem Eng Syst 4(March):5–15

    CAS  Google Scholar 

  52. Esfahani MR et al (2019) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep Purif Technol 213:465–499

    Article  CAS  Google Scholar 

  53. Kadhim RJ, Al-Ani FH, Al-Shaeli M, Alsalhy QF, Figoli A (2020) Removal of dyes using graphene oxide (Go) mixed matrix membranes. Membranes 10(12):1–24

    Article  Google Scholar 

  54. Medeiros VDN, Silva BIA, Ferreira RDSB, Oliveira SSL, Dias RA, Araújo EM (2020) Optimization of process parameters for obtaining polyethersulfone/additives membranes. Water (Switzerland) 12(8):1

    Google Scholar 

  55. Yunos MZ, Harun Z, Basri H, Shohur MF, Jamalludin MR, Hassan S (2013) Effect of zinc oxide on performance of ultrafiltration membrane for humic acid separation. Jurnal Teknologi (Sci Eng) 65(4):117–120

    Google Scholar 

  56. Aluwi Shakir N, Wong K, Noordin M, Sudin I (2015) Development of a high performance PES ultrafiltration hollow fiber membrane for oily wastewater treatment using response surface methodology. Sustainability 7(12):16465–16482

    Article  Google Scholar 

  57. Kusworo TD, Puji Utomo D, Rahmatya Gerhana A, Angga Putra H (2018) Process parameters optimization in membrane fabrication for produced water treatment using response surface methodology (RSM) and central composite design (CCD). Reaktor 18(1):1

    Article  Google Scholar 

  58. Shams A, Mirbagheri SA, Jahani Y (2019) The synergistic effect of graphene oxide and POSS in mixed matrix membranes for desalination. Desalination 472:1

    Article  Google Scholar 

  59. Shahriari HR, Hosseini SS (2020) Experimental and statistical investigation on fabrication and performance evaluation of structurally tailored PAN nanofiltration membranes for produced water treatment. Chem Eng Process Process Intensific 147:1

    Article  Google Scholar 

  60. Sargazi G, Khajeh Ebrahimi A, Afzali D, Badoei-Dalfard A, Malekabadi S, Karami Z (2019) Fabrication of PVA/ZnO fibrous composite polymer as a novel sorbent for arsenic removal: design and a systematic study. Polym Bull 76(11):5661–5682

    Article  CAS  Google Scholar 

  61. Pilkington JL, Preston C, Gomes RL (2014) Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind Crops Prod 58:15–24

    Article  CAS  Google Scholar 

  62. Nor NM et al (2017) Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol Biotechnol Equip 31(5):935–947

    Article  CAS  Google Scholar 

  63. “<RSM IMP.pdf>”

  64. Vatanpour V et al (2022) Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J Membr Sci 660:120893

    Article  CAS  Google Scholar 

  65. Mohammadi M, Mohammadi N, Mehdipour-Ataei SJIJOHE (2020) On the preparation of thin nanofibers of polysulfone polyelectrolyte for improving conductivity of proton-exchange membranes by electrospinning: Taguchi design, response surface methodology, and genetic algorithm. Int J Hydrog Energy 45(58):34110–34124

    Article  CAS  Google Scholar 

  66. Hu T, Mu Y, Chen Y, Zhou C, Zhao G, Dong G (2023) Combined effects of nanoparticle and stretch-induced orientation on crystal structure and properties of UHMWPE/TiO2 composite microporous membranes. Polym Compos 44(6):3580–3593

    Article  CAS  Google Scholar 

  67. Eden CL, Synthesis and performance evaluation of optimized silica sodalite in polysulfone mixed matrix membranes for pre-combustion CO2 capture

  68. Boublia A et al (2023) State-of-the-art review on recent advances in polymer engineering: modeling and optimization through response surface methodology approach. Polym Bull 80(6):5999–6031

    Article  CAS  Google Scholar 

  69. Enayatzadeh M, Mohammadi T, Fallah N (2019) Influence of TiO2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis. J Polym Res 26(10):11–22

    Article  Google Scholar 

  70. Adilah Rosnan N, Haan TY, Mohammad AW (2018) The effect of ZnO loading for the enhancement of PSF/ZnO–GO mixed matrix membrane performance. Sains Malaysiana 47(9):2035–2045

    Article  Google Scholar 

  71. Saini B, Sinha MK (2019) Effect of hydrophilic poly(ethylene glycol) methyl ether additive on the structure, morphology, and performance of polysulfone flat sheet ultrafiltration membrane. J Appl Polym Sci 136(10):1–14

    Article  Google Scholar 

  72. Darvishmanesh S et al (2011) Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. J Membr Sci 379(1–2):60–68

    Article  CAS  Google Scholar 

  73. Blanco JF, Sublet J, Nguyen QT, Schaetzel P (2006) Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J Membr Sci 283(1–2):27–37

    Article  CAS  Google Scholar 

  74. Asmadi AM (2013) Synthesis, characterization and performance of polysulfone/cellulose acetate phathalate/polyvinylpyrrolidone (PSf/CAP/PVP) blend ultrafiltration membranes, pp 1–183

  75. Garg MC, Joshi H (2017) Comparative assessment and multivariate optimization of commercially available small scale reverse osmosis membranes. J Environ Inf 29(1):39–52

    Google Scholar 

  76. Zularisam AW, Ismail AF, Salim MR, Sakinah M, Matsuura T (2009) Application of coagulation–ultrafiltration hybrid process for drinking water treatment: optimization of operating conditions using experimental design. Sep Purif Technol 65(2):193–210

    Article  CAS  Google Scholar 

  77. Bai TT, Cong MY, Jia YX, Ma KK, Wang M (2020) Preparation of self-crosslinking anion exchange membrane with acid block performance from side-chain type polysulfone. J Membr Sci 599:1

    Article  Google Scholar 

  78. Ganj M, Asadollahi M, Mousavi SA, Bastani D, Aghaeifard F (2019) Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J Polym Res 26(9):1

    Article  Google Scholar 

  79. Ochando-Pulido JM, Martinez-Ferez A (2018) Optimization of the fouling behaviour of a reverse osmosis membrane for purification of olive-oil washing wastewater. Process Saf Environ Prot 114:323–333

    Article  CAS  Google Scholar 

  80. Tavakolmoghadam M, Mokhtare A, Rekabdar F, Esmaeili M, Hossein Khanli Khaneghah A (2019) A predictive model for tuning additives for the fabrication of porous polymeric membranes. Mater Res Express 7(1):1–15

    Google Scholar 

  81. Goel V, Mandal UK (2019) Surface modification of polysulfone ultrafiltration membrane by in-situ ferric chloride based redox polymerization of aniline-surface characteristics and flux analyses. Korean J Chem Eng 36(4):573–583

    Article  CAS  Google Scholar 

  82. Harun Z, Yunos MZ, Yusof KN, Shohur MF, Lau WJ, Salleh WNW (2016) Optimization and characterization of polysulfone membranes made of zinc oxide, polyethylene glycol and eugenol as additives. J Eng Sci Technol 11(7):1001–1015

    Google Scholar 

  83. Mondal S, Kumar Majumder S (2020) Fabrication of the polysulfone-based composite ultrafiltration membranes for the adsorptive removal of heavy metal ions from their contaminated aqueous solutions. Chem Eng J 401(April):126036–126036

    Article  CAS  Google Scholar 

  84. Qtaishat M, Khayet M, Matsuura T (2009) Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation. J Membr Sci 341(1–2):139–148

    Article  CAS  Google Scholar 

  85. Tan XM, Rodrigue D (2019) A review on porous polymeric membrane preparation. Part II: production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 11(8):1

    Article  Google Scholar 

  86. Katibi KK, Yunos KF, Man HC, Aris AZ, Bin Mohd Nor MZ, Binti Azis RS (2021) Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: a review. Polymers 13(3):1–52

    Article  Google Scholar 

  87. Zangeneh H, Rahimi Z, Zinatizadeh AA, Razavizadeh SH, Zinadini S (2020) L-histidine doped-TiO2-CdS nanocomposite blended UF membranes with photocatalytic and self-cleaning properties for remediation of effluent from a local waste stabilization pond (WSP) under visible light. Process Saf Environ Prot 136(April):92–104

    Article  CAS  Google Scholar 

  88. Moradi M, Zinatizadeh AA, Zinadini S (2016) Influence of operating variables on performance of nanofiltration membrane for dye removal from synthetic wastewater using response surface methodology. Int J Eng 29(12):1650–1658

    CAS  Google Scholar 

  89. Lin YC, Tseng HH, Wang DK (2021) Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance. J Membr Sci 618(September 2020):118729–118729

    Article  CAS  Google Scholar 

  90. Alias SS, Harun Z, Shohur MF (2019) Effect of monovalent and divalent ions in non-solvent coagulation bath-induced phase inversion on the characterization of a porous polysulfone membrane. Polym Bull 76(11):5957–5979

    Article  CAS  Google Scholar 

  91. Aani A, Investigation N (2018) Cronfa-Swansea university open access repository desalination Cronfa URL for this paper: paper: of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

  92. Anis SF, Lalia BS, Hashaikeh R, Hilal N (2020) Breaking through the selectivity–permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application. Sep Purif Technol 242:116824–116824

    Article  CAS  Google Scholar 

  93. Alias SS, Harun Z, Manoh N, Jamalludin MR (2020) Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone—RHS ash mixed-matrix composite membranes (polymer bulletin). Springer, Berlin, pp 4043–4075

    Google Scholar 

  94. Najjar et al (2019) Enhanced fouling resistance and antibacterial properties of novel graphene oxide-arabic gum polyethersulfone membranes. Appl Sci (Switzerland) 9(3):1

    Google Scholar 

  95. Foong YX, Yew LH, Chai PV (2020) Green approaches to polysulfone based membrane preparation via dimethyl sulfoxide and eco-friendly natural additive gum Arabic. Mater Today Proc 46:2092–2097

    Article  Google Scholar 

  96. Wu SL, Liu F, Yang HC, Darling SB (2020) Recent progress in molecular engineering to tailor organic–inorganic interfaces in composite membranes. Mol Syst Des Eng 5(2):433–444

    Article  CAS  Google Scholar 

  97. Ursino et al (2018) Progress of nanocomposite membranes for water treatment. Membranes 8(2):1–40

    Article  Google Scholar 

  98. Sri Abirami Saraswathi MS, Nagendran A, Rana D (2019) Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. J Mater Chem A 7(15):8723–8745

    Article  CAS  Google Scholar 

  99. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A (2021) Photocatalytic–membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116

    Article  CAS  Google Scholar 

  100. Bandehali S et al (2021) A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J Ind Eng Chem 101:78–125

    Article  CAS  Google Scholar 

  101. Tiron LG, Pintilie SC, Lazar AL, Vlad M, Balta S, Bodor M (2018) Influence of polymer concentration on membrane performance in wastewater treatment. Materiale Plastice 55(1):95–98

    Article  Google Scholar 

  102. Pramila P, Gopalakrishnan N (2018) Effects of ZnO incorporation on PSF-PEG mixed matrix membrane. AIP Conf Proc 1942:1–5

    Google Scholar 

  103. Komaladewi AAIAS, Aryanti PTP, Surata IW, Subagia IDGA, Wenten IG (2019) Surface modification of microfiltration polypropylene membrane for molecular air filtration. Int J Eng Emerg Technol 4(1):74–80

    Google Scholar 

  104. Chang H et al (2015) Author’s accepted manuscript hydraulic irreversibility of ultrafiltration membrane fouling by humic acid : effects of membrane properties and backwash water composition. J Membr Sci 2015:1

    ADS  Google Scholar 

  105. Hong J, He Y (2012) Effects of nano sized zinc oxide on the performance of PVDF micro fi ltration membranes. DES 302:71–79

    Article  CAS  Google Scholar 

  106. Ravi J et al (2020) Polymeric membranes for desalination using membrane distillation: a review. Desalination 490(December 2019):114530–114530

    Article  CAS  Google Scholar 

  107. Geleta TA, Maggay IV, Chang Y, Venault A (2023) Recent advances on the fabrication of antifouling phase-inversion membranes by physical blending modification method

  108. Tung TX, Xu D, Zhang Y, Zhou Q, Wu Z (2019) Removing humic acid from aqueous solution using titanium dioxide: a review. Polish J Environ Studi 28(2):529–542

    Article  CAS  Google Scholar 

  109. Hasani G, Maleki A, Daraei H, Ghanbari R, Safari M (2019) A comparative optimization and performance analysis of four different electrocoagulation-flotation processes for humic acid removal from aqueous solutions. Process Saf Environ Prot 121:103–117

    Article  CAS  Google Scholar 

Download references

Funding

This project was conducted using chemicals and consumables that area readily available in our lab. Hence, we chose to publish subscription with no APC.

Author information

Authors and Affiliations

Authors

Contributions

Mr. TS worked on and prepared the manuscript. Dr. HB contributed to the discussion of the results. Additionally, Dr. AHB provided valuable feedback for improving the article, while Dr. ZY assisted in the interpretation of certain results and referencing.

Corresponding author

Correspondence to Hatijah Basri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, T., Basri, H., Bhat, A.H. et al. Predictive Model for Polysulfone Membrane Reinforced with Gum Arabic and Biogenic Zinc Oxide Nanoparticles Using CCD Response Surface Methodology for Membrane Performance Enhancement. J Polym Environ 32, 962–981 (2024). https://doi.org/10.1007/s10924-023-03035-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03035-1

Keywords

Navigation