Skip to main content

Advertisement

Log in

Modelling and optimization of Fenton processes through neural network and genetic algorithm

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM), multi-layer perceptron trained by Levenberg-Marquardt (MLP-LM); multi-layer perception and Sigma-Pi neural networks trained by particle swarm optimization (PSO) were used to effectively and reliably predict the performance of Classical-Fenton and Photo-Fenton processes. H2O2 doses, Fe(II) doses, and H2O2/Fe(II) rates were determined as independent variables in batch reactors. The performance of models was compared by using RMSE and MAE error criteria. The performance of models was also evaluated in terms of some properties of regression analysis and scatter that showed high linear relationship between the predictions of SP-PSO and the actual removal values. As a distinctive aspect of this study, SPNN trained by PSO was used for the first time in the literature in this area and the best predictive results for almost all cases were generated. Moreover, the genetic algorithm (GA) was applied for SP-PSO model results to determine the optimum values of the study. According to the results of GA, under the optimum conditions Photo-Fenton processes had higher performance in each experiment. Thereby, SP-PSO produced satisfactory prediction results without the need for any additional experiments in the case that experimental designs are difficult or costly for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNESCO, The United Nations World Water Development Report, 2003, pp. 92-3-103881-8.

  2. B. Jefferson, A. Laine, S. Parsons, T. Stephenson and S. Judd, Urban Water, 1(4), 285 (2000).

    Article  Google Scholar 

  3. E. Friedler and M. Hadari, Desalination, 190(1–3), 221 (2006).

    Article  CAS  Google Scholar 

  4. E. L. Terechova, G. Zhang, J. Chen, N. A. Sosnina and F. Yang, J. Environ. Chem. Eng., 2(4), 2111 (2014).

    Article  CAS  Google Scholar 

  5. A. K. Mostafazadeh, A. T. Benguit, A. Carabin, P. Drogui and E. Brien, J. Water Process Eng., 28, 277 (2019).

    Article  Google Scholar 

  6. V. V. Patil, P. R. Gogate, A. P. Bhat and P. K. Ghosh, Sep. Purif. Technol., 239, 116594 (2020).

    Article  CAS  Google Scholar 

  7. I. Ciabattia, F. Cesaro, L. Faralli, E. Fatarella and F. Tognotti, Desalination, 245(1–3), 451 (2009).

    Article  CAS  Google Scholar 

  8. A. G. L. Moura, V. B. Centurion, D. Y. Okada, F. Motteran, T. P. Delforno, V. M. Oliveira and M. B. A. Varesche, J. Environ. Manage., 251, 109495 (2019).

    Article  CAS  Google Scholar 

  9. A. Dimoglo, P. Sevim-Elibol, Ö. Dinç, K. Gökmen and H. Erdoğan, J. Water Process Eng., 31, 100877 (2019).

    Article  Google Scholar 

  10. J. Ge, J. Qu, P. Lei and H. Liu, Sep. Purif. Technol., 36(1), 33 (2004).

    Article  CAS  Google Scholar 

  11. B. G. Choobar, M. A. A. Shahmirzadi, A. Kargari and M. Manouchehri, J. Environ. Chem. Eng., 7(2), 103030 (2019).

    Article  Google Scholar 

  12. A. K. Huang, M. T. Veit, P. T. Juchen, G. D. C. Gonçalves, S. M. Palácio and C. D. O. Cardoso, J. Environ. Chem. Eng., 7(4), 103226 (2019).

    Article  CAS  Google Scholar 

  13. A. Sumisha, G. Arthanareeswaran, Y. L. Thuyavan, A. F. Ismail and S. Chakraborty, Ecotoxicol. Environ. Saf., 121(2004), 174 (2015).

    Article  CAS  Google Scholar 

  14. O. Turkay, S. Barişçi and M. Sillanpää, J. Environ. Chem. Eng., 5(5), 4282 (2017).

    Article  CAS  Google Scholar 

  15. T. H. Kim, C. Park, J. Yang and S. Kim, J. Hazard. Mater., 112(1–2), 95 (2004).

    Article  CAS  Google Scholar 

  16. H. Li, Y. Li, L. Xiang, Q. Huang, J. Qiu, H. Zhang, M. V. Sivaiah, F. Baron, J. Barrault, S. Petit and S. Valange, J. Hazard. Mater., 287, 32 (2015).

    Article  CAS  Google Scholar 

  17. N. C. Fernandes, L. B. Brito, G. G. Costa, S. F. Taveira, M. S. S. Cunha-Filho, G. A. R. Oliveira and R. N. Marreto, Chem. Biol. Interact., 291, 47 (2018).

    Article  CAS  Google Scholar 

  18. N. Ertugay and F. N. Acar, Arab. J. Chem., 10, S1158 (2017).

    Article  CAS  Google Scholar 

  19. J. M. Poyatos, M. M. Muñio, M. C. Almecija, J. C. Torres, E. Hontoria and F. Osorio, Water. Air. Soil Pollut., 205(1–4), 187 (2010).

    Article  CAS  Google Scholar 

  20. F. Emami, A. R. Tehrani-Bagha, K. Gharanjig and F. M. Menger, Desalination, 257(1–3), 124 (2010).

    Article  CAS  Google Scholar 

  21. K. Paździor, L. Bilińska and S. Ledakowicz, Chem. Eng. J., 376, 120597 (2019).

    Article  Google Scholar 

  22. U. Yolcu, Y. Jin and E. Egrioglu, 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016 (2017).

  23. U. Yolcu, E. Egrioglu, E. Bas, O. C. Yolcu and A. Z. Dalar, J. Exp. Theor. Artif. Intell., 33(3), 383 (2021).

    Article  Google Scholar 

  24. O. Cagcag Yolcu, E. Bas, E. Egrioglu and U. Yolcu, Neural Process. Lett., 47(3), 1133 (2018).

    Article  Google Scholar 

  25. E. Baştürk and A. Alver, J. Environ. Manage., 248, 109300 (2019).

    Article  Google Scholar 

  26. E. S. Elmolla, M. Chaudhuri and M. M. Eltoukhy, J. Hazard. Mater., 179(1–3), 127 (2010).

    Article  CAS  Google Scholar 

  27. M. Radwan, M. G. Alalm and H. Eletriby, J. Water Process Eng., 22, 155 (2018).

    Article  Google Scholar 

  28. M. R. Sabour and A. Amiri, Waste Manag., 65, 54 (2017).

    Article  CAS  Google Scholar 

  29. S. Talwar, A. K. Verma and V. K. Sangal, J. Environ. Manage., 250, 109428 (2019).

    Article  CAS  Google Scholar 

  30. A. Tolba, M. G. Alalm, M. Elsamadony, A. Mostafa, H. Afify and D. D. Dionysiou, Process Saf. Environ. Prot., 128, 273 (2019).

    Article  CAS  Google Scholar 

  31. A. M. Gholizadeh, M. Zarei, M. Ebratkhahan and A. Hasanzadeh, J. Environ. Chem. Eng., 9(1), 104999 (2021).

    Article  CAS  Google Scholar 

  32. N. Jaafarzadeh, M. Ahmadi, H. Amiri, M. H. Yassin and S. S. Martinez, J. Taiwan Inst. Chem. Eng., 43(6), 873 (2012).

    Article  CAS  Google Scholar 

  33. R. B. Baird, A. D. Eaton and E. W. Rice, Standard methods for the examination of water and wastewater, 23rd Ed., American public health association, Washington, DC (2017).

    Google Scholar 

  34. P. J. Werbos, The roots of backpropagation, John Wiley & Sons, New York (1974).

    Google Scholar 

  35. Y. Shin and J. Gosh, IJCNN-91-Seattle International Joint Conference on Neural Networks, 1, 13 (1991).

    Article  Google Scholar 

  36. J. Kennedy and R. Eberhart, Proceedings of IEEE international conference on neural networks, Piscataway, NJ: IEEE Service Center, Perth, Australia, 1942 (1995).

    Book  Google Scholar 

  37. J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, MIT Press, London, England (1992).

    Book  Google Scholar 

  38. D. E. Goldberg, Genetic algorithms in search, optimization and machine learning 13thEd. Edition, Addison-Wesley Publishing Company, Boston, United States (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hüseyin Cüce: Organized and Performed the experiments, Investigation, Reviewing. Fulya Aydın Temel: Data curation, Writing-Original draft preparation, Visualization, Investigation, Reviewing and Editing. Ozge Cagcag Yolcu: Software, Validation, Writing-Original draft preparation, Investigation, Reviewing and Editing.

Corresponding author

Correspondence to Fulya Aydın Temel.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cüce, H., Temel, F.A. & Yolcu, O.C. Modelling and optimization of Fenton processes through neural network and genetic algorithm. Korean J. Chem. Eng. 38, 2265–2278 (2021). https://doi.org/10.1007/s11814-021-0867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0867-4

Keywords

Navigation