Skip to main content

Advertisement

Log in

Deep-learning modeling and control optimization framework for intelligent thermal power plants: A practice on superheated steam temperature

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The operational flexibility requirement has brought great challenges to control systems of thermal power plants. Through the big data and deep-learning technology, intelligent thermal power plant can greatly improve the quality of deep peak-load regulation. Based on the framework of an intelligent thermal power plant, this paper proposes a control optimization framework by constructing a hybrid deep-learning simulation model adaptable for multiple disturbances and wide operational range. First, Gaussian naive Bayes is utilized to classify data for identification, in conjunction with prediction error method for fine data extraction. Second, deep long-short term memory is explored to fully learn extracted data attributes and identify the dynamic model. Third, based on the simulation model, two aspects are considered for control optimization: i) For a variety of immeasurable disturbances in thermal processes, the extended state observer is employed for disturbance rejection, and ii) as a widely used heuristic algorithm, particle swarm optimization is applied to optimize the parameters of controllers. Superheated steam temperature (SST) control system is the key system to maintain the safety and efficiency of a power plant; thus the proposed deep learning modeling and control optimization method is applied on the SST system of a 330 MW power plant in Nanjing, China. Simulation results compared with actual data and the index analysis demonstrated the effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F Nielsen, N. Nazemzadehm, L. W. Sillesen, M. Andersson, K. Gernaey and S. S. Mansouri, Comput. Chem. Eng., 140, 106916 (2020).

    Article  CAS  Google Scholar 

  2. A. M. Najar and D. K. Arif, J. Phys.: Conference Series, 1218, 012055 (2019).

    Google Scholar 

  3. C. Fang and D. Xiao, Process identification, Tsinghua University Press, Beijing (1988).

    Google Scholar 

  4. S. Zheng and J. Zhao, Comput. Chem. Eng., 135, 106755 (2020).

    Article  CAS  Google Scholar 

  5. Y. Guo, N. Wang, Z. Xu and K. Wu, Mechanical Syst. Signal Process., 142, 106630 (2020).

    Article  Google Scholar 

  6. Q. Zheng, Y. F. Li and J. Cao, Comput. Commun., 163, 84 (2020).

    Article  Google Scholar 

  7. Y. Zhang and J. Sun, 2nd International conference on electrical, computer engineering and electronics, 996–1001 (2015).

  8. C. Chen, G. Zhang, R. Tarefder, J. Ma, H. Wei and H. Guan, Accident Anal. Prevention, 80, 76 (2015).

    Article  Google Scholar 

  9. J. Feng, X. He and P. Wang, Comput. Digital Eng., 45, 2244 (2017).

    Google Scholar 

  10. Y. Nuo, Int. J. Appl. Dec. Sci., 11, 1 (2018).

    Google Scholar 

  11. T. Adedipe, M. Shafiee and E. Zio, Reliability Eng. Syst. Saf., 202, 107053 (2020).

    Article  Google Scholar 

  12. O. O. Marlis, L. C. Agustin, V. Giancarlo, G. Rainer and V. S. Mitchell, NeuroImage, 163, 471 (2017).

    Article  Google Scholar 

  13. M. R. Abdalmoaty and H. Hjalmarsson, Automatica, 105, 49 (2019).

    Article  Google Scholar 

  14. I. Maruta and T. Sugie, IFAC-PapersOnLine, 51, 479 (2018).

    Article  Google Scholar 

  15. W. Yu, I. Y. Kim, and C. Mechefske, Mechanical Syst. Signal Process., 149, 107322 (2021).

    Article  Google Scholar 

  16. G. Rao, W. Huang, Z. Feng, and Q. Cong, Neurocomputing, 308, 49 (2018).

    Article  Google Scholar 

  17. M. Rahman, D. Islam, R. J. Mukti, and I. Saha, Computational Biol. Chem., 88, 107329 (2020).

    Article  CAS  Google Scholar 

  18. Z. Zhang, Z. Lv, C. Gan and Q. Zhu, Neurocomputing, 410, 304 (2020).

    Article  Google Scholar 

  19. H. R. Yan, Y. Qin, S. Xiang and H. Chen, Measurement, 165, 108205 (2020).

    Article  Google Scholar 

  20. Y. Chen, Optik, 220, 164869 (2020).

    Article  Google Scholar 

  21. H. Fan, Z. Su, P. Wang and K. Y. Lee, Appl. Therm. Eng., 170, 114912 (2020).

    Article  Google Scholar 

  22. H. Fu, L. Pan, Y. Xue, L. Sun, D. Li, K. Y. Lee, Z. Wu, T. He and S. Zheng, IFAC-PapersOnLine, 50, 3227 (2017).

    Article  Google Scholar 

  23. J. Zhang, F. Zhang, M. Ren, G. Hou and F. Fang, ISA Trans., 51, 778 (2012).

    Article  Google Scholar 

  24. F. L. Xiao, J. H. Zhang, D. Y. Zhu and C. Zhang, IFAC Proceedings Volumes, 34, 505 (2001).

    Article  Google Scholar 

  25. T. Nahlovsky, Procedia Eng., 100, 1547 (2015).

    Article  Google Scholar 

  26. C. Chen, L. Pan, S. Liu, L. Sun and K. Y. Lee, Sustainability, 10, 4824 (2018).

    Article  Google Scholar 

  27. J. Hui, S. Ge, J. Ling and J. Yuan, Annals Nuclear Energy, 143, 107417 (2020).

    Article  CAS  Google Scholar 

  28. C. Chen, K. Zhang, K. Yuan and W Wang, IFAC-PapersOnLine, 50, 4388 (2017).

    Article  Google Scholar 

  29. F. Zhang, X. Wu and J. Shen, Appl. Therm. Eng., 118, 90 (2017).

    Article  Google Scholar 

  30. G. Yuan and W. Yang, Energy, 183, 926 (2019).

    Article  Google Scholar 

  31. H. P. Jagtap, A. K. Bewoor, R. Kumar, M. H. Ahmadi and L. Chen, Reliability Eng. Syst. Saf., 204, 107130 (2020).

    Article  Google Scholar 

  32. H. M. Pesaran, M. Nazari-Heris, B. Mohammadi-Ivatloo and H. Seyedi, Energy, 209, 118218 (2020).

    Article  Google Scholar 

  33. H. Xi, P. Liao and X. Wu, Appl. Therm. Eng., 184, 116287 (2021).

    Article  CAS  Google Scholar 

  34. W. Song, C. Cattani and C. H. Chi, Energy, 194, 116847 (2020).

    Article  Google Scholar 

  35. A. Gelman, B. Goodrich, J. Gabry and A. Vehtari, The American Statistician, 73, 307 (2019).

    Article  Google Scholar 

  36. L. Sun, D. Li, K. Hu, K. Y. Lee and F. Pan, Ind. Eng. Chem. Res., 55, 6686 (2016).

    Article  CAS  Google Scholar 

  37. K. J. Åström and T. Hägglund, Advanced PID control, International society of automation, Pittsburgh (2006).

    Google Scholar 

  38. D. Tang, Z. Gao and X. Zhang, Control Theory & Applications, 34, 101 (2017).

    Google Scholar 

  39. Q. Xu, M. Sun, Z. Chen and D. Zhang, In Proceedings of the 32nd Chinese Control Conference, 5408 (2013).

    Google Scholar 

  40. O. Hard, J. Appl. Statistics, 36, 1109 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 51576040 and 51936003. The authors would like to give our sincere appreciation to the editor and anonymous referees for their careful review and valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Qianchao Wang: Methodology, Software, Validation, Data curation, Writing - original draft, Visualization. Lei Pan: Methodology, Formal analysis, Investigation, Resources, Writing — original draft, Supervision, Project administration. Kwang Y. Lee: Resources, Writing, Analysis. Zizhan Wu: Programming, Writing.

Corresponding author

Correspondence to Lei Pan.

Additional information

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pan, L., Lee, K.Y. et al. Deep-learning modeling and control optimization framework for intelligent thermal power plants: A practice on superheated steam temperature. Korean J. Chem. Eng. 38, 1983–2002 (2021). https://doi.org/10.1007/s11814-021-0865-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0865-6

Keywords

Navigation