Skip to main content
Log in

Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A series of experiments was conducted to study the effect of temperature and feed rate on physicochemical properties and yield of bio-oil. The experiments were performed in a helical screw fluidized bed reactor and about 150-gram palm shell (PS) was pyrolyzed in each run at 275 °C/min heating rate. The first set of experiments was conducted at temperature ranging from 400 to 650 °C without using any inert gas for fluidization. While the second set of experiments were performed at feed rates ranging from 3 to 25 g/min in order to investigate the effects of feed rate on pyrolytic products. Results showed that the bio-oil yield was increased with the increase in temperature and feed rate due to the enhanced biomass volatilization. In a similar vein to this, a greater extent in oxygenates cracking was also noted in the bio-oil. A maximum liquid yield of about 72.84 wt% was obtained at 500 °C, while 72.92 wt% liquid yield was obtained with 25 g/min feed rate. The HHV of bio-oil was also increased from 38.52 to 43.13 MJ/kg when pyrolysis temperature was increased from 400 to 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ayala-Cortés, D. R. Lobato-Peralta, C. E. Arreola-Ramos, D. C. Martínez-Casillas, D. E. Pacheco-Catalán, A. K. Cuentas-Gallegos, C. A. Arancibia-Bulnes and H. I. Villafán-Vidales, J. Anal. Appl. Pyrolysis, 140, 290 (2019).

    Article  CAS  Google Scholar 

  2. T. Miranda, I. Montero, F. J. Sepúlveda, J. I. Arranz, C. V. Rojas and S. Nogales, Mater. (Basel, Switzerland), 8, 1413 (2015).

    Article  CAS  Google Scholar 

  3. F. Abnisa, A. Arami-Niya, W. W. Daud, J. Sahu and I. Noor, Energy Convers. Manage., 76, 1073 (2013).

    Article  CAS  Google Scholar 

  4. K. M. Qureshi, F. Abnisa and W. M. A. Wan Daud, J. Anal. Appl. Pyrolysis, 142, 104605 (2019).

    Article  CAS  Google Scholar 

  5. J. Akhtar and N. S. Amin, Renew. Sustain. Energy Rev., 16, 5101 (2012).

    Article  CAS  Google Scholar 

  6. K. M. Qureshi, A. N. Kay Lup, S. Khan, F. Abnisa and W. M. A. W. Daud, J. Anal. Appl. Pyrolysis, 131, 52 (2018).

    Article  CAS  Google Scholar 

  7. Z. Xiong, S. S. A. Syed-Hassan, X. Hu, J. Guo, Y. Chen, Q. Liu, Y. Wang, S. Su, S. Hu and J. Xiang, Fuel, 233, 461 (2018).

    Article  CAS  Google Scholar 

  8. M. N. Uddin, K. Techato, J. Taweekun, M. M. Rahman, M. G. Rasul, T. M. I. Mahlia and S. M. Ashrafur, Energies, 11, 3115 (2018).

    Article  CAS  Google Scholar 

  9. M. I. Jahirul, M. G. Rasul, A. A. Chowdhury and N. Ashwath, Energies, 5, 4952 (2012).

    Article  CAS  Google Scholar 

  10. K. M. Qureshi, A. N. Kay Lup, S. Khan, F. Abnisa and W. M. A. Wan Daud, Cleaner Eng. Technol., 4, 100174 (2021).

    Article  Google Scholar 

  11. J. I. Montoya, F. Chejne-Janna and M. Garcia-Pérez, DYNA, 82, 239 (2015).

    Article  Google Scholar 

  12. C. Quan and N. Gao, BioMed Res. Int., 2016, 6197867 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Y. Wang, L. Qiu, M. Zhu, G. Sun, T. Zhang and K. Kang, Sci. Rep., 9, 5535 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. C. Z. Zaman, K. Pal, W. A. Yehye, S. Sagadevan, S. T. Shah, G. A. Adebisi, E. Marliana, R. F. Rafique and R. B. Johan, in Pyrolysis, M. Samer Ed., IntechOpen Limited, London (2017).

  15. A. V. Bridgwater, Biomass Bioenergy, 38, 68 (2012).

    Article  CAS  Google Scholar 

  16. T. Kan, V. Strezov and T. J. Evans, Renew. Sustain. Energy Rev., 57, 1126 (2016).

    Article  CAS  Google Scholar 

  17. N. Bhattacharjee and A. B. Biswas, J. Energy Inst., 91, 605 (2018).

    Article  CAS  Google Scholar 

  18. S. Mutsengerere, C. H. Chihobo, D. Musademba and I. Nhapi, Renew. Sustain. Energy Rev., 104, 328 (2019).

    Article  CAS  Google Scholar 

  19. A. Heidari, R. Stahl, H. Younesi, A. Rashidi, N. Troeger and A. A. Ghoreyshi, J. Ind. Eng. Chem., 20, 2594 (2014).

    Article  CAS  Google Scholar 

  20. R. Zhou, H. Lei and J. L. Julson, Int. J. Agric. Biol. Eng., 6, 53 (2013).

    CAS  Google Scholar 

  21. R. E. Guedes, A. S. Luna and A. R. Torres, J. Anal. Appl. Pyrolysis, 129, 134 (2018).

    Article  CAS  Google Scholar 

  22. Q. Xiong, S. Aramideh and S.-C. Kong, Energy Fuels, 27, 5948 (2013).

    Article  CAS  Google Scholar 

  23. K. M. Qureshi, F. Abnisa and W. M. A. Wan Daud, J. Anal. Appl. Pyrolysis, 142, 104605 (2019).

    Article  CAS  Google Scholar 

  24. F. Abnisa, W. M. A. W. Daud, W. N. W. Husin and J. N. Sahu, Biomass Bioenergy, 35, 1863 (2011).

    Article  CAS  Google Scholar 

  25. M. S. A. Moraes, D. Tomasini, J. M. da Silva, M. E. Machado, L. C. Krause, C. A. Zini, R. A. Jacques and E. B. Caramao, in Frontiers in bioenergy and biofuels, E. Jacob-Lopes and L. Q. Zepka Eds., IntechOpen Limited, London (2017).

  26. Y. Lu, G.-S. Li, Y.-C. Lu, X. Fan and X.-Y. Wei, Int. J. Anal. Chem., 2017, 9298523 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. J. I. Montoya, F. Chejne-Janna and M. Garcia-Perez, DYNA, 82, 239 (2015).

    Article  Google Scholar 

  28. E. Ranzi, A Cuoci, T Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci and S. Sommariva, Energy Fuels, 22, 4292 (2008).

    Article  CAS  Google Scholar 

  29. C. Branca and C. Di Blasi, Ind. Eng. Chem. Res., 45, 5891 (2006).

    Article  CAS  Google Scholar 

  30. A. V. Bridgwater, Biomass Bioenergy, 38, 68 (2012).

    Article  CAS  Google Scholar 

  31. R. V. Powar and S. Gangil, Int. J. Renew. Energy Res., 3, 519 (2013).

    Google Scholar 

  32. S. W. Kim, B. S. Koo, J. W. Ryu, J. S. Lee, C. J. Kim, D. H. Lee, G. R. Kim and S. Choi, Fuel Process. Technol., 108, 118 (2013).

    Article  CAS  Google Scholar 

  33. P. T. Williams and E. A. Williams, J. Anal. Appl. Pyrolysis, 51, 107 (1999).

    Article  CAS  Google Scholar 

  34. S. Zhou, M. Garcia-Perez, B. Pecha, A. G. McDonald, S. R. A. Kersten and R. J. M. Westerhof, Energy Fuels, 27, 1428 (2013).

    Article  CAS  Google Scholar 

  35. S. Jalalifar, R. Abbassi, V. Garaniya, K. Hawboldt and M. Ghiji, Fuel, 234, 616 (2018).

    Article  CAS  Google Scholar 

  36. W. Treedet and R. Suntivarakorn, Fuel Process. Technol., 179, 17 (2018).

    Article  CAS  Google Scholar 

  37. M. Bardalai and D. K. Mahanta, Int. J. Renew. Energy Res., 5, 277 (2015).

    Google Scholar 

  38. P. S. Tanvidkar, Catalytic up-gradation of bio-oil by pyrolysis of biomass, Master, Chemical Engineering, National Institute of Technology Rourkela Odisha, India (2015).

    Google Scholar 

  39. M. Bertero, H. A. Gorostegui, C. J. Orrabalis, C. A. Guzmán, E. L. Calandri and U. Sedran, Fuel, 116, 409 (2014).

    Article  CAS  Google Scholar 

  40. Q. Lu, W.-Z. Li and X.-F. Zhu, Energy Convers. Manage., 50, 1376 (2009).

    Article  CAS  Google Scholar 

  41. M. Ringer, V. Putsche and J. Scahill, Large-scale pyrolysis oil production: A technology assessment and economic analysis, National Renewable Energy Lab. (NREL), Golden, CO (United States) (2006).

    Google Scholar 

  42. C. L. Yiin, S. Yusup, P. Udomsap, B. Yoosuk and S. Sukkasi, Computer Aided Chem. Eng., 33, 223 (2014).

    Article  CAS  Google Scholar 

  43. K. Kundu, A. Chatterjee, T. Bhattacharyya, M. Roy and A. Kaur, in Prospects of alternative transportation fuels, A. P. Singh, R. A. Agarwal, A. K. Agarwal, A. Dhar and M. K. Shukla Eds., Springer, Singapore (2018).

  44. F. M. Hossain, J. Kosinkova, R. J. Brown, Z. Ristovski, B. Hankamer, E. Stephens and T. J. Rainey, Energies, 10, 467 (2017).

    Article  CAS  Google Scholar 

  45. A. N. Kay Lup, F. Abnisa W. M. A. W. Daud and M. K. Aroua, Asia-Pacific J. Chem. Eng., 14, e2293 (2019).

    Article  CAS  Google Scholar 

  46. S. Khan, A. N. Kay Lup, K. M. Qureshi, F. Abnisa, W. M. A. Wan Daud and M. F. A. Patah, J. Anal. Appl. Pyrolysis, 140, 1 (2019).

    Article  CAS  Google Scholar 

  47. A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud and M. K. Aroua, J. Ind. Eng. Chem., 56, 1 (2017).

    Article  CAS  Google Scholar 

  48. A. N. Kay Lup, F. Abnisa, W. M. A. W. Daud and M. K. Aroua, Appl. Catal. A: Gen., 541, 87 (2017).

    Article  CAS  Google Scholar 

  49. G. Lyu, S. Wu and H. Zhang, Front. Energy Res., 3, 28 (2015).

    Article  Google Scholar 

  50. P. Fu, S. Hu, J. Xiang, P. Li, D. Huang, L. Jiang, A. Zhang and J. Zhang, J. Anal. Appl. Pyrolysis, 88, 117 (2010).

    Article  CAS  Google Scholar 

  51. C. Hu, H. Zhang and R. Xiao, Energy Convers. Manage., 177, 765 (2018).

    Article  CAS  Google Scholar 

  52. S. H. Chang, Biomass Bioenergy, 119, 263 (2018).

    Article  CAS  Google Scholar 

  53. J. O. Ogunkanmi, D. M. Kulla, N. O. Omisanya, M. Sumaila, D. O. Obada and D. Dodoo-Arhin, Case Studies Therm. Eng., 12, 711 (2018).

    Article  Google Scholar 

  54. A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud and M. K. Aroua, Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process, presented at the 3rd ICChESA 2017: Materials Science and Engineering (2018).

  55. A. N. Kay Lup, F. Abnisa, W. M. A. W. Daud and M. K. Aroua, Chin. J. Chem. Eng., 27, 349 (2019).

    Article  CAS  Google Scholar 

  56. L. Fan, Y. Zhang, S. Liu, N. Zhou, P. Chen, Y. Cheng, M. Addy, Q. Lu, M. M. Omar, Y. Liu, Y. Wang, L. Dai, E. Anderson, P. Peng, H. Lei and R. Ruan, Bioresour. Technol., 241, 1118 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. T. Miranda, I. Montero, F. J. Sepúlveda, J. I. Arranz, C. V. Rojas and S. Nogales, Materials, 8, 1413 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. M. K. Rafiq, R. T. Bachmann, M. T. Rafiq, Z. Shang, S. Joseph and R. Long, PloS One, 11, e0156894 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. U. D. Hamza, N. S. Nasri, N. S. Amin, J. Mohammed and H. M. Zain, Desalin. Water Treat., 57, 7999 (2016).

    Article  CAS  Google Scholar 

  60. H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  61. Y. Lu, Y.-C. Lu, H.-Q. Hu, F.-J. Xie, X.-Y. Wei and X. Fan, J. Spectroscopy, 2017, 1 (2017).

    Article  CAS  Google Scholar 

  62. S.-J. Kim, S.-H. Jung and J.-S. Kim, Bioresour. Technol., 101, 9294 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank GSP-MOHE, University of Malaya for funding this study through the project number MO008-2015. This work is also supported by Xiamen University Malaysia Research Fund (Grant No: XMUMRF/2021-C7/IENG/0032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Ng Kay Lup or Wan Mohd Ashri Wan Daud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, K.M., Lup, A.N.K., Khan, S. et al. Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor. Korean J. Chem. Eng. 38, 1797–1809 (2021). https://doi.org/10.1007/s11814-021-0842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0842-0

Keywords

Navigation