Skip to main content

Advertisement

Log in

Utilization of geothermal waste as a silica adsorbent for biodiesel purification

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The purification process of biodiesel requires an adsorbent to reduce glycerin content releasing high purity of biodiesel. The adsorbent must be affordable in source and process, readily available, and have high adsorption capacity. This paper discusses utilization of silica aerogel from geothermal waste as an adsorbent of biodiesel to reduce glycerin. The paper investigates the potential of a high silica content of geothermal waste as silica adsorbent by observation of the glycerin adsorption capacity and its kinetics study. At the beginning, geothermal silica preparation was subjected to the purification of geothermal silica waste using sulfuric acid, sol-gel process, and drying process at ambient pressure. This research was statistically carried out by varying the volume ratio of HCl to sodium silicate (3–5), drying time (1–2 hours), and percent weight of silica (3–5%-w) using Design-Expert® Version 8.0.6 (State-Ease, Inc). The silica product was characterized through BET, FTIR, XRF, and XRD analysis. Analysis of untreated and treated biodiesel used GPC, GCMS, and titration based on Indonesian National Standard (SNI) of No. 06-1564-1995. The optimum conditions for preparation for removing glycerin in biodiesel was reached at ratio volume of HCl to sodium silicate of 3 : 1, 2 hours of drying time, and 3%-w silica adsorbent. The optimum of surface area of the silica adsorbent and the glycerin adsorption capacity can be attained at 371 m2/g glycerin and 10±0.1 mg/g, respectively. Further meaning, the glycerin concentration in biodiesel can be reduced from (4±0.10)% to (0.1±0.01)% by using the silica adsorbent performing biodiesel characterization according to SNI in terms of glycerin content. The second-order pseudo model can be used to describe the glycerin adsorption in biodiesel by determination of k at 0.0036 g/mg min at the optimum condition preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kumar and M. P. Sharma, Renew. Sustain. Energy Rev., 56, 1129 (2016).

    Article  CAS  Google Scholar 

  2. S. Y. Pan, C. W. Li, Y. Z. Huang, C. Fan, Y. C. Tai and Y. L. Chen, Bioresour. Technol., 318, 124045 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. K. L. Yu, W. H. Chen, H. K. Sheen, J. S. Chang, C. S. Lin, H. C. Ong, P. L. Show and T. C. Ling, Fuel, 279, 118435 (2020).

    Article  CAS  Google Scholar 

  4. A. S. Yusuff and J. O. Owolabi, South African J. Chem. Eng., 30, 42 (2019).

    Article  Google Scholar 

  5. A. Jacob, B. Ashok, A. Alagumalai, O. H. Chyuan and P. T. K. Le, Energy Convers. Manage., 228, 113655 (2020).

    Article  CAS  Google Scholar 

  6. J. Janaun and N. Ellis, Renew. Sustain. Energy Rev., 14, 1312 (2010).

    Article  CAS  Google Scholar 

  7. J. Kansedo, K. T. Lee and S. Bhatia, Biomass and Bioenergy, 33, 271 (2009).

    Article  CAS  Google Scholar 

  8. A. Gashaw and A. Teshita, Int. J. Renew. Sustain. Energy, 3, 92 (2014).

    CAS  Google Scholar 

  9. M. J. Yu, Y. B. Jo, S. G. Kim, Y. K. Lim, J. K. Jeon, S. H. Park, S. S. Kim and Y. K. Park, Korean J. Chem. Eng., 28, 2287 (2011).

    Article  CAS  Google Scholar 

  10. J. H. Lee, S. B. Kim, H. Y. Yoo, J. H. Lee, S. O. Han, C. Park and S. W. Kim, Korean J. Chem. Eng., 30, 1335 (2013).

    Article  CAS  Google Scholar 

  11. A. Avinash, P. Sasikumar and A. Pugazhendhi, Renew. Sustain. Energy Rev., 134, 110250 (2020).

    Article  Google Scholar 

  12. A. Saravanakumar, A. Avinash and R. Saravanakumar, Energy Sources, Part A Recover. Util. Environ. Eff., 38, 2524 (2016).

    Article  CAS  Google Scholar 

  13. M. Agarwal, G. Chauhan, S. P. Chaurasia and K. Singh, J. Taiwan Inst. Chem. Eng., 43, 89 (2012).

    Article  CAS  Google Scholar 

  14. V. G. Tacias-Pascacio, B. Torrestiana-Sánchez, L. Dal Magro, J. J. Virgen-Ortíz, F. J. Suárez-Ruíz, R. C. Rodrigues and R. Fernandez-Lafuente, Renew. Energy, 135, 1 (2019).

    Article  CAS  Google Scholar 

  15. A. Avinash and A. Murugesan, Sci. Rep., 7, 1 (2017).

    Article  CAS  Google Scholar 

  16. W. Pitakpoolsil and M. Hunsom, J. Environ. Manage., 133, 284 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. L. R. Kumar, S. K. Yellapu and R. D. Tyagi, Biodiesel production: technologies and future prospects, R. D. Tyagi, R. Y. Surampalli, T. C. Zhang, S. Yan and X. Zhang Eds., American Society of Civil Engineers, Washington (2019).

  18. M. L. Pisarello, B. O. D. Costa, N. S. Veizaga and C. A. Querini, Ind. Eng. Chem. Res., 49, 8935 (2010).

    Article  CAS  Google Scholar 

  19. C. S. Faccini, M. E. Da Cunha, M. S. A. Moraes, L. C. Krause, M. C. Manique, M. R. A. Rodrigues, E. V. Benvenutti and E. B. Caramão, J. Braz. Chem. Soc., 22, 558 (2011).

    Article  CAS  Google Scholar 

  20. M. C. P. Cruz, S. P. Ravagnani, F. M. S. Brogna, S. P. Campana, G. C. Triviño, A. C. L. Lisboa and L. H. I. Mei, Biotechnol. Appl. Biochem., 40, 243 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. M. Berrios and R. L. Skelton, Chem. Eng. J., 144, 459 (2008).

    Article  CAS  Google Scholar 

  22. M. C. Manique, C. S. Faccini, B. Onorevoli, E. V. Benvenutti and E. B. Caramão, Fuel, 92, 56 (2012).

    Article  CAS  Google Scholar 

  23. F. D. Santos, L. R. V. da Conceição, A. Ceron and H. F. de Castro, Appl. Clay Sci., 149, 41 (2017).

    Article  CAS  Google Scholar 

  24. M. G. Gomes, D. Q. Santos, L. C. De Morais, and D. Pasquini, Fuel, 155, 1 (2015).

    Article  CAS  Google Scholar 

  25. A. L. Squissato, D. M. Fernandes, R. M. F. Sousa, R. R. Cunha, D. S. Serqueira, E. M. Richter, D. Pasquini and R. A. A. Muñoz, Cellulose, 22, 1263 (2015).

    Article  CAS  Google Scholar 

  26. M. Catarino, E. Ferreira, A. P. S. Dias and J. Gomes, Chem. Eng. J., 386, 123930 (2020).

    Article  CAS  Google Scholar 

  27. F. D. Santos, L. Rafael, V. Conceição, D. S. Giordani and H. F. De Castro, Int. J. Eng. Res. Sci., 2, 34 (2016).

    Google Scholar 

  28. J. C. Yori, S. A. D’Ippolito, C. L. Pieck and C. R. Vera, Energy Fuels, 21, 347 (2007).

    Article  CAS  Google Scholar 

  29. Z. J. Predojević, Fuel, 87, 3522 (2008).

    Article  CAS  Google Scholar 

  30. V. A. Mazzieri, C. R. Vera and J. C. Yori, Energy Fuels, 22, 4281 (2008).

    Article  CAS  Google Scholar 

  31. M. Ahmaruzzaman and V. K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011).

    Article  CAS  Google Scholar 

  32. A. Purnomo, F. Dalanta, A. D. Oktaviani and S. Silviana, AIP Conf. Proc., 2026, 020077 (2018).

    Article  CAS  Google Scholar 

  33. S. Silviana, A. Noorpasha and M. M. Rahman, Civ. Eng. Archit., 8, 281 (2020).

    Article  Google Scholar 

  34. S. Silviana, A. Darmawan, A. A. Janitra, A. Ma’ruf and I. Triesty, Int. J. Emerg. Trends Eng. Res., 8, 4854 (2020).

    Article  Google Scholar 

  35. D. Musino, Impact of surface modification on the structure and dynamics of silica-polymer nanocomposites, PhD diss., Université Montpellier (2018).

  36. A. M. Alswieleh, J. Chem., 2020, 1 (2020).

    Article  CAS  Google Scholar 

  37. K. Sarikhani, K. Jeddi, R. B. Thompson, C. B. Park and P. Chen, Langmuir, 31, 5571 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. H. K. D. Nguyen, P. T. Hoang and N. T. Dinh, J. Braz. Chem. Soc., 29, 1714 (2018).

    CAS  Google Scholar 

  39. N. Pal and A. Mandal, Chem. Eng. Sci., 226, 115887 (2020).

    Article  CAS  Google Scholar 

  40. N. Saengprachum and S. Pengprecha, Int. Conf. Life Sci. Eng., 45, 17 (2012).

    CAS  Google Scholar 

  41. S. R. da Silva, N. J. A. de Albuquerque, R. M. de Almeida and F. C. de Abreu, Materials (Basel), 10, 1132 (2017).

    Article  CAS  Google Scholar 

  42. S. L. Raja, J. Chem. Nat. Resour., 1, 88 (2019).

    Google Scholar 

  43. G. G. Kaya and H. Deveci, J. Ind. Eng. Chem., 89, 13 (2020).

    Article  CAS  Google Scholar 

  44. M. L. N. Perdigoto, R. C. Martins, N. Rocha, M. J. Quina, L. Gando-Ferreira, R. Patrício and L. Durães, J. Colloid Interface Sci., 380, 134 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. J. H. Moon, H. Ahn, S. H. Hyun and C. H. Lee, Korean J. Chem. Eng., 21, 477 (2004).

    Article  CAS  Google Scholar 

  46. J. Ryu, S. M. Kim, J. W. Choi, J. M. Ha, D. J. Ahn, D. J. Suh and Y. W. Suh, Catal. Commun., 29, 40 (2012).

    Article  CAS  Google Scholar 

  47. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang and D. Y. Nadargi, J. Nanomater., 2010, 1 (2010).

    Article  CAS  Google Scholar 

  48. S. Motahari, M. Nodeh and K. Maghsoudi, Desalin. Water Treat., 57, 16886 (2016).

    CAS  Google Scholar 

  49. C. Li, J. Zhu, M. Zhou, S. Zhang and X. He, Materials (Basel), 12, 1782 (2019).

    Article  CAS  Google Scholar 

  50. H. Y. Nah, V. G. Parale, H. N. R. Jung, K. Y. Lee, C. H. Lim, Y. S. Ku and H. H. Park, J. Sol-Gel Sci. Technol., 85, 302 (2018).

    Article  CAS  Google Scholar 

  51. A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar and T. Seth, Appl. Surf. Sci., 206, 262 (2003).

    Article  CAS  Google Scholar 

  52. M. Zabeti, W. M. A. W. Daud and M. K. Aroua, Fuel Process. Technol., 91, 243 (2010).

    Article  CAS  Google Scholar 

  53. U. K. H. Bangi, A. V. Rao and A. P. Rao, Sci. Technol. Adv. Mater., 9, 035006 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. J. Li, C. Wan, Y. Lu and Q. Sun, Front. Agric. Sci. Eng., 1, 46 (2014).

    Article  CAS  Google Scholar 

  55. N. A. Pambudi, R. Itoi, R. Yamashiro, B. Y. C. S. Alam, L. Tusara, S. Jalilinasrabady and J. Khasani, Geothermics, 54, 109 (2015).

    Article  Google Scholar 

  56. S. Silviana, R. M. Hasbi, C. P. Sagita, O. D. Nurhayati, A. Fauzan, S. Suhartana and J. U. D. Hatmoko, Proceeding of Seminar Teknologi Hijau 2, 1, 341 (2017).

    Google Scholar 

  57. S. Silviana, G. J. Sanyoto, A. Darmawan and H. Sutanto, Rasayan J. Chem., 13, 1692 (2020).

    Article  CAS  Google Scholar 

  58. S. Silviana, I. N. H. Rambe, H. Sudrajat and M. A. Zidan, AIP Conf. Proc., 2202, 020069 (2019).

    Article  CAS  Google Scholar 

  59. S. Silviana, A. Darmawan, A. Subagio and F. Dalanta, ASEAN J. Chem. Eng., 19, 91 (2019).

    Article  Google Scholar 

  60. S. Silviana, A. Darmawan, F. Dalanta, A. Subagio, F. Hermawan and H. M. Santoso, Materials (Basel), 14, 1 (2021).

    Article  CAS  Google Scholar 

  61. S. Affandi, H. Setyawan, S. Winardi, A. Purwanto and R. Balgis, Adv. Powder Technol., 20, 468 (2009).

    Article  CAS  Google Scholar 

  62. S. E. Lee, Y. S. Ahn, J. S. Lee, C. H. Cho, C. K. Hong and O. H. Kwon, J. Ceram. Process. Res., 18, 777 (2017).

    Google Scholar 

  63. F. Furqon, A. K. Nugroho and M. K. Anshorulloh, Rona Tek. Pertan., 12, 22 (2019).

    Article  Google Scholar 

  64. M. J. Alves, Í. V. Cavalcanti, M. M. de Resende, V. L. Cardoso and M. H. Reis, Ind. Crops Prod., 89, 119 (2016).

    Article  CAS  Google Scholar 

  65. J. Van Gerpen, B. Shanks, R. Pruszko, D. Clements and G. Knothe, Biodiesel analytical methods: August 2002-January 2004, National Renewable Energy Lab., United States (2004).

    Book  Google Scholar 

  66. É. De Castro Vasques, C. R. G. Tavares, C. I. Yamamoto, M. R. Mafra and L. Igarashi-Mafra, Environ. Technol., (United Kingdom), 34, 2361 (2013).

    Google Scholar 

  67. M. A. Azmi, N. A. A. Ismail, M. Rizamarhaiza, A. A. K. W. M. Hasif and H. Taib, AIP Conf. Proc., 1756, 020005 (2016).

    Article  Google Scholar 

  68. S. Musić, N. Filipović-Vinceković and L. Sekovanić, Brazilian J. Chem. Eng., 28, 89 (2011).

    Article  Google Scholar 

  69. A. M. Anderson and M. K. Carroll, in Aerogels handbook, M. A. Aegerter, N. Leventis, M. M. Koebel Eds., Adv. Sol-Gel Deriv. Materials Technol., New York (2011).

  70. H. Tamon, T. Kitamura and M. Okazaki, J. Colloid Interface Sci., 197, 353 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. M. Lazrag, C. Lemaitre, C. Castel, A. Hannachi and D. Barth, J. Supercrit. Fluids, 140, 394 (2018).

    Article  CAS  Google Scholar 

  72. J. Bajorath, Chemoinformatics: Concepts, methods, and tools for drug discovery, Humana Press, New Jersey (2004).

    Book  Google Scholar 

  73. V. Apostolopoulou-Kalkavoura, P. Munier and L. Bergström, Adv. Mater., 2001839, 1 (2020).

    Google Scholar 

  74. M. A. Ashraf, W. Peng, Y. Zare and K. Y. Rhee, Nanoscale Res. Lett., 13, 1 (2018).

    Article  CAS  Google Scholar 

  75. S. H. Soytaş, O. Oğuz and Y. Z. Menceloğlu, in Polymer composites with functionalized nanoparticles, K. Pielichowski and T. M. Majka Eds., Elsevier (2018).

  76. S. Karamikamkar, H. E. Naguib and C. B. Park, Adv. Colloid Interface Sci., 276, 102101 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. C. Jeon and H. P. Kwang, Water Res., 39, 3938 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. D. L. Manuale, E. Greco, A. Clementz, G. C. Torres, C. R. Vera and J. C. Yori, Chem. Eng. J., 256, 372 (2014).

    Article  CAS  Google Scholar 

  79. L. S. Martin, A. Ceron, P. C. Oliveira, G. M. Zanin and H. F. de Castro, J. Ind. Eng. Chem., 62, 462 (2018).

    Article  CAS  Google Scholar 

  80. M. Danish, M. W. Mumtaz, M. Fakhar and U. Rashid, Chiang Mai J. Sci., 44, 1570 (2017).

    CAS  Google Scholar 

  81. M. P. Fuller, G. L. Ritter and C. S. Draper, Appl. Spectrosc., 42, 217 (1988).

    Article  CAS  Google Scholar 

  82. S. Kongjao, S. Damronglerd and M. Hunsom, Korean J. Chem. Eng., 27, 944 (2010).

    Article  CAS  Google Scholar 

  83. B. H. Stuart, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons, Ltd, Chichester (2005).

    Google Scholar 

  84. I. Raheem, M. N. Bin Mohiddin, Y. H. Tan, J. Kansedo, N. M. Mubarak, M. O. Abdullah and M. L. Ibrahim, J. Ind. Eng. Chem., 91, 54 (2020).

    Article  CAS  Google Scholar 

  85. V. Chairgulprasert and P. Madlah, Sci. Technol. Asia, 23, 1 (2018).

    Google Scholar 

Download references

Acknowledgement

The authors received direct funding for this research from Directorate General of Higher Education Ministry of National Education Indonesia No. 257-68/UN7.6.1/PP/2020. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Silviana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silviana, S., Anggoro, D.D., Salsabila, C.A. et al. Utilization of geothermal waste as a silica adsorbent for biodiesel purification. Korean J. Chem. Eng. 38, 2091–2105 (2021). https://doi.org/10.1007/s11814-021-0827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0827-z

Keywords

Navigation