Skip to main content

Advertisement

Log in

Experimental and modeling studies for intensification of mercaptans extraction from LSRN using a microfluidic system

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the performance of a T-type microchannel for mercaptan extraction from light straight-run naphtha (LSRN) with sodium hydroxide solution. The aim of this work is to introduce the microfluidic system as a potential tool for mercaptan extraction from light petroleum products. Modeling the extraction process of mercaptan from LSRN has not been carried out previously. In this regard, mercaptan extraction was modeled by response surface methodology (RSM) and artificial neural network (ANN) to analyze the effect of operating parameters on the mercaptan extraction process. The independent variables are considered as temperature, sodium hydroxide concentration, and the volume ratio of sodium hydroxide to LSRN. Two models were compared based on error analysis of the predicted data. Root mean square error, mean relative error, and determination coefficient for the neural network were 0.5650, 0.4341, and 0.9862, respectively. The values of these parameters for the RSM model were 0.6854, 0.7648, and 0.9798. The results showed that the prediction accuracy for both models is appropriate, but the precision of the neural network model is slightly higher than that of the RSM model. The genetic algorithm (GA) technique determined the optimal values of the independent variables with the aim of maximizing the extraction percentage. The mercaptan extraction percentage value of 85.08% was achieved at 303.15 K, the sodium hydroxide concentration of 20 wt%, and the volume ratio of sodium hydroxide to LSRN of 0.128. Furthermore, results showed a higher mercaptan extraction percentage of the microfluidic system compared to a conventional extractor at the same process condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

bias

COS:

carbonyl sulfide

CS2 :

carbon disulfide

E:

extraction percentage

e:

error term

F:

transfer function

K E :

overall extraction constant

M:

mercaptan concentration [ppm]

m:

number of input variables

N:

number of data points

n:

number of neurons

R2 :

coefficient of determination

RS :

ionized mercaptan

RSH:

mercaptan

W:

weight

X:

independent variables

Y:

predicted response of RSM model

y:

predicted response of ANN model

a:

average

aq:

aqueous phase

H:

hidden layer

in:

inlet

max:

maximum

min:

minimum

norm:

normalized

org:

organic phase

out:

outlet

t:

target data

ANN:

artificial neural network

ANOVA:

analysis of variance

CCD:

central composite design

GA:

genetic algorithm

KORC:

kermanshah oil refinery company

LPG:

liquefied petroleum gas

LSRN:

light straight-run naphtha

MRE:

mean relative error

RMSE:

root mean square error

RSM:

response surface methodology

References

  1. M. Khalkhali, A. Ghorbani and B. Bayati, Polyhedron, 171, 403 (2019).

    Article  CAS  Google Scholar 

  2. D. Yabroff, Ind. Eng. Chem., 32, 257 (1940).

    Article  CAS  Google Scholar 

  3. B. Basu, S. Satapathy and A. Bhatnagar, Catal. Rev. Sci. Eng., 35, 571 (1993).

    Article  CAS  Google Scholar 

  4. R. Barzamini, C. Falamaki and R. Mahmoudi, Fuel, 130, 46 (2014).

    Article  CAS  Google Scholar 

  5. Q. Liu, M. Ke, P. Yu, F. Liu, H. Hu and C. Li, Korean J. Chem. Eng., 35, 137 (2018).

    Article  CAS  Google Scholar 

  6. M. R. Ehsani, A. R. Safadoost, R. Avazzadeh and A. Barkhordari, Iran. J. Chem. Chem. Eng., 32, 71 (2013).

    CAS  Google Scholar 

  7. C. J. LaFoy, US Patent, 4,705,620 (1985).

  8. R. Liu, D. Xia, Y. Xiang and Y. Tian, Pet. Sci. Technol., 23, 711 (2005).

    Article  CAS  Google Scholar 

  9. A. S. Afshar, S. R. Hashemi, M. Miri and P. Setayeshi, Pet. Sci. Technol., 31, 2364 (2013).

    Article  CAS  Google Scholar 

  10. S. Ganguly, N. Rathi and A. Jain, Pet. Sci. Technol., 31, 1283 (2013).

    Article  CAS  Google Scholar 

  11. M. Shahrak, E. Ebrahimzadeh and F. Shahraki, Energy Sources Part A, 37, 791 (2015).

    Article  CAS  Google Scholar 

  12. P. Amani, M. Amani and R. Hasanvandian, Korean J. Chem. Eng., 34, 1456 (2017).

    Article  CAS  Google Scholar 

  13. A. Parvareh, Iran. J. Chem. Eng., 14, 55 (2017).

    Google Scholar 

  14. A. Akopyan, B. Andreev, A. Anisimov, E. Eseva, A. Tarakanova, A. Ustinov, A. Kleimenov, D. Kondrashev, D. Khrapov and R. Esipenko, Russ. J. Appl. Chem., 92, 865 (2019).

    Article  CAS  Google Scholar 

  15. Y. S. Huh, S. J. Jeon, E. Z. Lee, H. S. Park and W. H. Hong, Korean J. Chem. Eng., 28, 633 (2011).

    Article  CAS  Google Scholar 

  16. K.-I. Sotowa, R. Miyoshi, C.-G. Lee, Y. Kang and K. Kusakabe, Korean J. Chem. Eng., 22, 552 (2005).

    Article  CAS  Google Scholar 

  17. M. N. Kashid, A. Gupta, A. Renken and L. Kiwi-Minsker, Chem. Eng. J., 158, 233 (2010).

    Article  CAS  Google Scholar 

  18. K. K. Singh, A. U. Renjith and K. T. Shenoy, Chem. Eng. Process., 98, 95 (2015).

    Article  CAS  Google Scholar 

  19. L. Zhang, F. Xie, S. Li, S. Yin, J. Peng and S. Ju, Green Process. Synth., 4, 3 (2015).

    CAS  Google Scholar 

  20. S. Dai, J. Luo, J. Li, X. Zhu, Y. Cao and S. Komarneni, Ind. Eng. Chem. Res., 56, 12717 (2017).

    Article  CAS  Google Scholar 

  21. M. Al-Azzawi, F. S. Mjalli, A. Al-Hashmi, T. Al-Wahaibi and B. Abu-jdayil, Chem. Eng. Process., 140, 43 (2019).

    Article  CAS  Google Scholar 

  22. X. Chen, T. Li and Z. Hu, Microsyst. Technol., 23, 2649 (2017).

    Article  CAS  Google Scholar 

  23. X. Chen and J. Shen, Int. J. Heat. Mass. Transfer., 106, 593 (2017).

    Article  CAS  Google Scholar 

  24. M. Darekar, N. Sen, K. Singh, S. Mukhopadhyay, K. Shenoy and S. Ghosh, Hydrometallurgy, 144, 54 (2014).

    Article  Google Scholar 

  25. A. Talebi, T. T. Teng, A. F. Alkarkhi, I. Norli and L. W. Low, Desalination. Water. Treat., 47, 334 (2012).

    Article  CAS  Google Scholar 

  26. M. Asadollahzadeh, H. Tavakoli, M. Torab-Mostaedi, G. Hosseini and A. Hemmati, Talanta, 123, 25 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. M. Karmakar, M. Mahapatra and N. R. Singha, Korean J. Chem. Eng., 34, 1416 (2017).

    Article  CAS  Google Scholar 

  28. S. Yildiz, Korean J. Chem. Eng., 34, 2423 (2017).

    Article  CAS  Google Scholar 

  29. B. Kim, Y. Choi, J. Choi, Y. Shin and S. Lee, Korean J. Chem. Eng., 37, 1 (2020).

    Article  CAS  Google Scholar 

  30. S. Uslu, Fuel, 276, 117990 (2020).

    Article  CAS  Google Scholar 

  31. UOP163-10, Hydrogen Sulfide and Mercaptan Sulfur in Liquid Hydrocarbons by Potentiometric Titration, ASTM International, West Conshohocken, PA, 2010, www.astm.org.

    Google Scholar 

  32. A. S. Afshar and S. R. Hashemi, Int. J. Chem. Biomol. Eng., 79, (2011).

  33. M. Filiz, N. Sayar and A. Sayar, Hydrometallurgy, 81, 167 (2006).

    Article  CAS  Google Scholar 

  34. G. R. Daham, A. A. AbdulRazak, A. S. Hamadi and A. A. Mohammed, Korean J. Chem. Eng., 34, 2435 (2017).

    Article  CAS  Google Scholar 

  35. A. Fazlali, P. Koranian, R. Beigzadeh and M. Rahimi, Korean J. Chem. Eng., 30, 1681 (2013).

    Article  CAS  Google Scholar 

  36. M. Izadi, M. Rahimi and R. Beigzadeh, Chem. Eng. J., 356, 570 (2019).

    Article  CAS  Google Scholar 

  37. M. Rahimi, M. Hajialyani, R. Beigzadeh and A. A. Alsairafi, Chem. Eng. Res. Des., 98, 147 (2015).

    Article  CAS  Google Scholar 

  38. H. Sahraie, M. R. Mirani, M. H. Ahmadi and M. Ashouri, Energy Convers. Manage., 99, 81 (2015).

    Article  Google Scholar 

  39. M. R. Mirani and F. Rahimpour, J. Chromatogr. A, 1422, 170 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the Kermanshah Oil Refinery Company (KORC) for preparing the LSRN samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fazlali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirani, M.R., Fazlali, A. & Rahimi, M. Experimental and modeling studies for intensification of mercaptans extraction from LSRN using a microfluidic system. Korean J. Chem. Eng. 38, 1023–1031 (2021). https://doi.org/10.1007/s11814-021-0749-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0749-9

Keywords

Navigation