Skip to main content

Advertisement

Log in

Direct synthesis of hydrogen peroxide over palladium catalysts supported on glucose-derived amorphous carbons

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Untreated and sulfonated biomass-derived amorphous carbons were prepared by the pyrolysis of D-glucose at different temperatures, followed by sulfonation. Not only the surface functional group concentration but also the structure of polyaromatic carbon sheets was significantly affected by the carbonization temperature and sulfonation. More importantly, the carbonization temperature played a crucial role in determining the size of Pd nanoparticles (NPs) on glucose-derived carbons (GCx) and thereby affected the catalytic performance of Pd/GCx for the direct synthesis of hydrogen peroxide (DSHP). The volcano-shaped dependency between the Pd NP size and the carbonization temperature of GCx agrees well with the reverse relationship between the Pd NP size and the catalytic activity of Pd/GCx. The flexible polyaromatic carbon sheet structure of the GCx was beneficial in increasing the sulfonic acid group content on the carbon surface and, therefore, H2O2 selectivity was improved in the presence of the Pd/S-GC2 catalyst (Pd supported on the sulfonated glucose-derived carbon pyrolyzed at 723 K). However, both H2 conversion and H2O2 productivity decreased over the same catalyst, possibly due to the decreased number of active sites on the clustered or single-site Pd. Reducing the catalyst resulted in a decrease in H2O2 selectivity by significantly lowering the Pd2+/Pd0 ratio and increasing the Pd NP size. These results clearly demonstrate that fine control of the physicochemical properties of the active metal and GCx support and their synergistic combination is essential to realize an efficient Pd catalyst supported on GCx for the DSHP reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Goor, J. Glenneberg and S. Jacobi, Hydrogen Peroxide in Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH, Weinheim (2012).

    Google Scholar 

  2. J. M. Campos-Martin, G. Blanco-Brieva and J. L. G. Fierro, Angew. Chem. Int. Ed., 45, 6962 (2006).

    Article  CAS  Google Scholar 

  3. C. Samanta, Appl. Catal. A Gen., 350, 133 (2008).

    Article  CAS  Google Scholar 

  4. S. Ranganathan and V. Sieber, Catalysts, 8, 379 (2018).

    Article  Google Scholar 

  5. F. Menegazzo, M. Signoretto, E. Ghedini, G. Strukul, F. Menegazzo, M. Signoretto, E. Ghedini and G. Strukul, Catalysts, 9, 251 (2019).

    Article  Google Scholar 

  6. J. S. J. Hargreaves, Y.-M. Chung, W. S. Ahn, T. Hisatomi, K. Domen, M.C. Kung and H. H. Kung, Appl. Catal. A Gen., 594, 117419 (2020).

    Article  CAS  Google Scholar 

  7. S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff and I. E. L. Stephens, ACS Catal., 8, 4064 (2018).

    Article  CAS  Google Scholar 

  8. J. K. Edwards, S. J. Freakley, A. F. Carley, C. J. Kiely and G. J. Hutchings, Acc. Chem. Res., 47, 845 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. D. W. Flaherty, ACS Catal., 8, 1520 (2018).

    Article  CAS  Google Scholar 

  10. M. Seo, H. J. Kim, S. S. Han and K. Y. Lee, Catal. Surv. from Asia, 21, 1 (2017).

    Article  CAS  Google Scholar 

  11. R. J. Lewis and G. J. Hutchings, ChemCatChem, 11, 298 (2019).

    Article  CAS  Google Scholar 

  12. H.-U. Blaser, A. Indolese, A. Schnyder, H. Steiner and M. Studer, J. Mol. Catal. A Chem., 173, 3 (2001).

    Article  CAS  Google Scholar 

  13. M.L. Toebes, J.A. Van Dillen and K.P. De Jong, J. Mol. Catal. A Chem., 173, 75 (2001).

    Article  CAS  Google Scholar 

  14. X. Xiao, T. U. Kang, H. Nam, S. H. Bhang, S. Y. Lee, J. P. Ahn and T. Yu, Korean J. Chem. Eng., 35, 2379 (2018).

    Article  CAS  Google Scholar 

  15. Y. Jang, H. Nam, J. Song and S. Lee, Korean J. Chem. Eng., 36, 1417 (2019).

    Article  CAS  Google Scholar 

  16. J. K. Edwards, B. Solsona, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Science, 323, 1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. B. Hu, W. Deng, R. Li, Q. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt and P. Miquel, J. Catal., 319, 15 (2014).

    Article  CAS  Google Scholar 

  18. T. García, S. Agouram, A. Dejoz, J. F. Sánchez-Royo, L. Torrente-Murciano and B. Solsona, Catal. Today, 248, 48 (2015).

    Article  Google Scholar 

  19. R. Arrigo, M. E. Schuster, S. Abate, G. Giorgianni, G. Centi, S. Perathoner, S. Wrabetz, V. Pfeifer, M. Antonietti and R. Schlögl, ACS Catal., 6, 6959 (2016).

    Article  CAS  Google Scholar 

  20. S. Yook, H. C. Kwon, Y. G. Kim, W. Choi and M. Choi, ACS Sustain. Chem. Eng., 5, 1208 (2017).

    Article  CAS  Google Scholar 

  21. S. Lee, H. Jeong and Y.-M. Chung, J. Catal., 365, 125 (2018).

    Article  CAS  Google Scholar 

  22. S. Lee and Y.-M. Chung, Mater. Lett., 234, 58 (2019).

    Article  CAS  Google Scholar 

  23. S. Lee and Y.-M. Chung, Catal. Today, 352, 270 (2020).

    Article  CAS  Google Scholar 

  24. V. T. T. Hang and Y.-M. Chung, Korean J. Chem. Eng., 37, 65 (2020).

    Article  CAS  Google Scholar 

  25. H. T. T. Vu, V. L. N. Vo and Y.-M. Chung, Appl. Catal. A Gen., 607, 117867 (2020).

    Article  Google Scholar 

  26. S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk and H. A. Andreas, Carbon, 48, 1252 (2010).

    Article  CAS  Google Scholar 

  27. H. Jeon and Y.-M. Chung, Appl. Catal. B Environ, 210, 212 (2017).

    Article  CAS  Google Scholar 

  28. M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen and M. Hara, Nature, 438, 177 (2005).

    Article  Google Scholar 

  29. K. Nakajima and M. Hara, ACS Catal., 2, 1296 (2012).

    Article  CAS  Google Scholar 

  30. M. Hara T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi and K. Domen, Angew. Chem. Int. Ed., 43, 2955 (2004).

    Article  CAS  Google Scholar 

  31. S. Suganuma, K. Nakajima, M. Kitano, S. Hayashi and M. Hara, ChemSusChem, 5, 1841 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. S. K. Mohamed, M. Abuelhamd, N. K. Allam, A. Shahat, M. Ramadan and H. M. A. Hassan, Desalination, 477, 114278 (2020).

    Article  CAS  Google Scholar 

  33. J. Wang, W. Xu, J. Ren, X. Liu, G. Lu and Y. Wang, Green Chem, 13, 2678 (2011).

    Article  CAS  Google Scholar 

  34. K. Ngaosuwan, J. G. Goodwin and P. Prasertdham, Renew. Energy, 86, 262 (2016).

    Article  CAS  Google Scholar 

  35. W. W. Mar and E. Somsook, Procedia Eng., 32, 212 (2012).

    Article  CAS  Google Scholar 

  36. G. Cerchiaro, A. C. Sant’Ana, M. L. A. Temperini and A. M. Da Costa Ferreira, Carbohydr. Res., 340, 2352 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. A. F. Bell, L. D. Barron and L. Hecht, Carbohydr. Res., 257, 11 (1994).

    Article  CAS  Google Scholar 

  38. H. He and C. Gao, Molecules, 15, 4679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Gu, W. Qi, X. Xu, Z. Sun, L. Zhang, W. Liu, X. Pan and D. Su, Nanoscak, 6, 6609 (2014).

    Article  CAS  Google Scholar 

  40. Y. Qu, A. Engdahl, S. Zhu, V. Vajda and N. McLoughlin, Astrobiology, 15, 825 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. J. Kim, Y.-M. Chung, S.-M. Kang, C.-H. Choi, B.-Y. Kim, Y.-T. Kwon, T. J. Kim, S.-H. Oh and C.-S. Lee, ACS Catal., 2, 1042 (2012).

    Article  CAS  Google Scholar 

  42. Y.-M. Chung, Y.-T. Kwon, T. J. Kim, S.-H. Oh and C.-S. Lee, Chem. Commun., 47, 5705 (2011).

    Article  CAS  Google Scholar 

  43. Z. Khan, N. F. Dummer and J. K. Edwards, Philos. Trans. R.. Soc. A Math. Phys. Eng. Sci., 376, 20170058 (2018).

    Article  Google Scholar 

  44. P. Tian, L. Ouyang, X. Xu, C. Ao, X. Xu, R. Si, X. Shen, M. Lin, J. Xu and Y. F. Han, J. Catal., 349, 30 (2017).

    Article  CAS  Google Scholar 

  45. A. C. Zaman, J. Mol. Liq., 249, 892 (2018).

    Article  CAS  Google Scholar 

  46. S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi and M. Hara, J. Am. Chem. Soc., 130, 12787 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. S. Suganuma, K. Nakajima, M. Kitano, H. Kato, A. Tamura, H. Kondo, S. Yanagawa, S. Hayashi and M. Hara, Micropor. Mesopor. Mater., 143, 443 (2011).

    Article  CAS  Google Scholar 

  48. M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, K. Domen, T. Tatsumi, M. Hara and S. Hayashi, Chem. Mater., 18, 3039 (2006).

    Article  CAS  Google Scholar 

  49. C. Wang, Z. Guo, W. Shen, A. Zhang, Q. Xu, H. Liu and Y. Wang, J. Mater. Chem. A, 3, 6064 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B02006928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, H.T.T., Vo, V.L.N. & Chung, YM. Direct synthesis of hydrogen peroxide over palladium catalysts supported on glucose-derived amorphous carbons. Korean J. Chem. Eng. 38, 1139–1148 (2021). https://doi.org/10.1007/s11814-021-0748-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0748-x

Keywords

Navigation