Skip to main content
Log in

Dehydrogenation of ethane and subsequent activation of CO2 on hierarchically-structured bimetallic FeM@ZSM-5 (M=Ce, Ga, and Sn)

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The catalytic activity for dehydrogenation of C2H6 and successive CO2 activation was studied by using hierarchically-structured bimetallic FeM/ZSM-5 (M=Ce, Ga, and Sn metal) to verify the redox property of the Fe nanoparticles and metal promoters on the acidic ZSM-5. Based on the surface characteristics, the reducibility and oxygen vacant sites of metal oxides on the ZSM-5 largely altered the reduction-oxidation nature and catalytic cracking behavior. The metal-promoted Fe/ZSM-5, especially with CeO2 promoter on the FeCe/ZSM-5, revealed excellent redox cycles and higher steady-state dehydrogenation activity such as a comparable C2H6 conversion of 6.1% as well as C2H4 selectivity of 89.8% at 600 °C with a larger CO production with 9.7 mmol/g by CO2 activation at 700 °C. This observation was attributed to the incorporated partially reducible CeO2 species by enhancing their interaction with ZSM-5 as well as by easily stabilizing the oxidation states of Ce and Fe metal oxides with its higher thermal stability during C2H6 dehydrogenation through an initial oxidative dehydrogenation followed by a steady-state catalytic cracking and subsequent CO2 activation to CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dixit, P. Kostetskyy and G. Mpourmpakis, ACS Catal., 8, 11570 (2018)

    Article  CAS  Google Scholar 

  2. Y. He, Y. Song and S. Laursen, ACS Catal., 9, 10464 (2019)

    Article  CAS  Google Scholar 

  3. Y. Gao, L. Neal, D. Ding, W. Wu, C. Baroi, A. M. Gaffney and F. Li, ACS Catal., 9, 8592 (2019).

    Article  CAS  Google Scholar 

  4. S. Yusuf, V. Haribal, D. Jackson, L. Neal and F. Li, Appl. Catal. B, 257, 117885 (2019)

    Article  CAS  Google Scholar 

  5. X. Li, A. Kant, Y. He, H. V. Thakkar, M. A. Atanga, F. Rezaei, D. K. Ludlow and A. A. Rownaghi, Catal. Today, 276, 62 (2016).

    Article  CAS  Google Scholar 

  6. C. He and F. You, Ind. Eng. Chem. Res., 53, 11442 (2014)

    Article  CAS  Google Scholar 

  7. M. Yang, X. Tian and F. You, Ind. Eng. Chem. Res., 57, 5980 (2018)

    Article  CAS  Google Scholar 

  8. Z. J. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng and J. Gong, Angew. Chem. Int. Ed., 57, 6791 (2018).

    Article  CAS  Google Scholar 

  9. D. P. Solowey, M. V. Mane, T. Kurogi, P. J. Carroll, B. C. Manor, M.-H. Baik and D. J. Mindiola, Nat. Chem., 9, 1126 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. H. Li, S. A. Kadam, A. Vimont, R. F. Wormsbecher and A. Travert, ACS Catal., 6, 4536 (2016).

    Article  CAS  Google Scholar 

  11. S. Yusuf, L. Neal, Z. Bao, Z. Wu and F. Li, ACS Catal., 9, 3174 (2019).

    Article  CAS  Google Scholar 

  12. V. P. Haribal, L. M. Neal and F. Li, Energy, 119, 1024 (2017).

    Article  CAS  Google Scholar 

  13. D. Lee, H. J. Ryu, D. Shun, D. H. Bae and J. I. Baek, Korean J. Chem. Eng., 35, 1257 (2018).

    Article  CAS  Google Scholar 

  14. Y. S. Yun, M. Lee, J. Sung, D. Yun, T. Y. Kim, H. Park, K. R. Lee, C. K. Song, Y. Kim, J. Lee, Y-J. Seo, I. K. Song and J. Yi, Appl. Catal. B, 237, 554 (2018).

    Article  CAS  Google Scholar 

  15. Z. Skoufa, E. Heracleous and A. A. Lemonidou, J. Catal., 322, 118 (2015).

    Article  CAS  Google Scholar 

  16. M. D. Porosoff, M. N. Z. Myint, S. Kattel, Z. Xie, E. Gomez, P. Liu and J. G. Chen, Angew. Chem. Int. Ed., 54, 15501 (2015)

    Article  CAS  Google Scholar 

  17. E. Gomez, X. Nie, J. H. Lee, Z. Xie and J. G. Chen, J. Am. Chem, Soc., 141, 17771 (2019).

    Article  CAS  Google Scholar 

  18. S. Yao, B. Yan, Z. Jiang, Z. Liu, Q. Wu, J. H. Lee and J. G. Chen, ACS Catal., 8, 5374 (2018)

    Article  CAS  Google Scholar 

  19. E. Gomez, Z. Xie and J. G. Chen, AIChE J., 65, e16670 (2019).

    Article  Google Scholar 

  20. L. M. Neal, V. P. Haribal and F. Li, Science, 19, 894 (2019)

    CAS  Google Scholar 

  21. L. M. Neal, S. Yusuf, J. A. Sofranko and F. Li, Energy Technol., 4, 1200 (2016).

    Article  CAS  Google Scholar 

  22. L. C. Wang, Y. Zhang, J. Xu, W. Diao, S. Karakalos, B. Liu, X. Song, W. Wu, T. He and D. Ding, Appl. Catal. B, 256, 117816 (2019).

    Article  Google Scholar 

  23. M. W. Schreiber, C. P. Plaisance, M. Baumgärtl, K. Reuter, A. Jentys, R. Bermejo-Deval and J. A. Lercher, J. Am. Chem, Soc., 140, 4849 (2018)

    Article  CAS  Google Scholar 

  24. A. Samanta, X. Bai, B. Robinson, H. Chen and J. Hu, Ind. Eng. Chem. Res., 56, 11006 (2017)

    Article  CAS  Google Scholar 

  25. S. W. Choi, W.-G. Kim, J.-S. So, J. S. Moore, Y. Liu, R. S. Dixit, J. G. Pendergast, C. Sievers, D. S. Sholl, S. Nair and C. W. Jones, J. Catal., 345, 113 (2017).

    Article  CAS  Google Scholar 

  26. E. A. Pidko, V. B. Kazansky, E. J. M. Hensen and R. A. van Santen, J. Catal., 240, 73 (2006).

    Article  CAS  Google Scholar 

  27. J. H. Yun and R. F. Lobo, J. Catal., 312, 263 (2014).

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y. Zhou, A. Qiu, Y. Wang, Y. Xu and P. Wu, Catal. Commun., 7(11), 860 (2006).

    Article  CAS  Google Scholar 

  29. H. Huang, H. Zhu, Q. Zhang and C. Li, Korean J. Chem. Eng., 36, 210 (2019).

    Article  CAS  Google Scholar 

  30. X. Chen, M. Qiao, S. Xie, K. Fan, W. Zhou and H. He, J. Am. Chem, Soc., 129, 13305 (2007).

    Article  CAS  Google Scholar 

  31. M. Saeidi and M. Hamidzadeh, Res. Chem. Intermed., 43, 2143 (2017).

    Article  CAS  Google Scholar 

  32. R. Feng, X. Yan, X. Hu, Y. Zhang, J. Wu and Z. Yan, Appl. Catal. A, 594, 117464 (2020).

    Article  Google Scholar 

  33. R. M. Mohamed, H. M. Aly, M. F. El-Shahat and I. A. Ibrahim, Micropor. Mesopor. Mater., 79, 7 (2005).

    Article  CAS  Google Scholar 

  34. L. G. A. van de Water, J. C. van der Waal, J. C. Jansen, M. Cadoni, L. Marchese and T. Maschmeyer, J. Phys. Chem. B, 107, 10423 (2003).

    Article  CAS  Google Scholar 

  35. X. Cui, Y. Zhu, Z. Hua, J. Feng, Z. Liu, L. Chen, J. Shi, Energy Environ. Sci., 8, 1261 (2015).

    Article  CAS  Google Scholar 

  36. Y. Zhang, M. Xue, Y. Zhou, H. Zhang, W. Wang, Q. Wang and X. Sheng, RSC Adv., 6, 29410 (2016)

    Article  CAS  Google Scholar 

  37. S. Kasipandi and J. W. Bae, Adv. Mater., 31, 1803390 (2019)

    Article  Google Scholar 

  38. Z. Sarshar, Z. Sun, D. Zhao and S. Kaliaguine, Energy Fuels, 26, 3091 (2012).

    Article  CAS  Google Scholar 

  39. J. Zhu, Z. Zhao, D. Xiao, J. Li, X. Yang and Y. Wu, J. Mol. Catal. A, 238, 35 (2005).

    Article  CAS  Google Scholar 

  40. M. H. Jeong, J. Sun, G. Y. Han, D. H. Lee and J. W. Bae, Appl. Catal. B., 270, 118887 (2020).

    Article  CAS  Google Scholar 

  41. M. H. Jeong, D. H. Lee, G. Y. Han, C.-H. Shin, M. K. Shin, C. K. Ko and J. W. Bae, Fuel, 202, 547 (2017).

    Article  CAS  Google Scholar 

  42. E. Yuan, G. Wu, W. Dai, N. Guan and L. Li, Catal. Sci. Technol., 7, 3036 (2017).

    Article  CAS  Google Scholar 

  43. Y. Lai and G. Veser, Catal. Sci. Technol., 6, 5440 (2016).

    Article  CAS  Google Scholar 

  44. T. Feng and J. M. Vohs, J. Catal., 221, 619 (2004)

    Article  CAS  Google Scholar 

  45. C. L. Li and Y. C. Lin, Appl. Catal. B, 107, 284 (2011).

    Article  CAS  Google Scholar 

  46. C. Wang, H. Shi and Y. Li, Appl. Surf. Sci., 257, 6873 (2011).

    Article  CAS  Google Scholar 

  47. L. Freire, X. R. Nóvoa, M. F. Montemor and M. J. Carmezim, Mater. Chem. Phys., 114, 962 (2009).

    Article  CAS  Google Scholar 

  48. K. Kuntaiah, P. Sudarsanam, B. M. Reddy and A. Vinu, RSC Adv., 3, 7953 (2013).

    Article  CAS  Google Scholar 

  49. I. A. Hassan, S. Sathasivam, H. U. Islam, S. P. Nair and C. J. Carmalt, RSC Adv., 7, 551 (2017).

    Article  CAS  Google Scholar 

  50. D. Chen, D. He, J. Lu, L. Zhong, F. Liu, J. Liu, J. Yu, G. Wan, S. He and Y. Luo, Appl. Catal. B, 218, 249 (2017).

    Article  CAS  Google Scholar 

  51. T. Lei, C. Miao, W. Hua, Y. Yue, Z. Gao, Catal. Lett., 148, 1634 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (Project #: NRF- 2018M3 D3A1A01018009 and NRF-2020R1A2C2006052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Wook Bae.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

11814_2020_709_MOESM1_ESM.pdf

Dehydrogenation of ethane and subsequent activation of CO2 on hierarchically-structured bimetallic FeM@ZSM-5 (M=Ce, Ga, and Sn)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, M.H., Park, K.S., Shen, D.M. et al. Dehydrogenation of ethane and subsequent activation of CO2 on hierarchically-structured bimetallic FeM@ZSM-5 (M=Ce, Ga, and Sn). Korean J. Chem. Eng. 38, 1129–1138 (2021). https://doi.org/10.1007/s11814-020-0709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0709-9

Keywords

Navigation