Skip to main content
Log in

Phenol removal via activated carbon from co-pyrolysis of waste coal tar pitch and vinasse

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The behavior and characteristics of phenol adsorption by activated carbon produced from co-pyrolysis of coal tar pitch and vinasse were investigated. Coal tar pitch and vinasse (mass ratio of 1:3) were firstly co-pyrolyzed and carbonated at 400 °C for 2 h. The carbonized material produced was then soaked with saturated KOH solution and activated at 800 °C for 1 h to form activated carbon. Results from the phenol wastewater adsorption experiments suggest that pseudo-second-order kinetics and the Weber-Morris model could reflect the time-dependent adsorption behavior of phenol wastewater by the activated carbon, revealing that internal diffusion represents the rate-limiting procedure and dominant process to control the adsorption rate in the early stage of the adsorption. Monolayer adsorption played the key role during the phenol adsorption. The adsorption was an endothermic reaction in temperature ranging from 15 °C to 35 °C, indicating that the adsorption speed could be stimulated by the increasing temperature. This study establishes a theoretical foundation for the usage and the potential application of the activated carbon derived from coal tar pitch and vinasse in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Olivares-Marin, V. Del Prete, E. Garcia-Moruno, C. Fernandez-Gonzalez, A. Macias-Garcia and V. Gomez-Serrano, Food Control, 20, 298 (2009).

    Article  CAS  Google Scholar 

  2. A. Martínez de Yuso, M. Teresa Izquierdo, R. Valenciano and B. Rubio, Fuel Process. Technol, 110, 1 (2013).

    Article  Google Scholar 

  3. R. Yavuz, H. Akyildiz, N. Karatepe and E. Etinkaya, Fuel Process. Technol., 91, 80 (2010).

    Article  CAS  Google Scholar 

  4. F. Kaouah, S. Boumaza, T. Berrama, M. Trari and Z. Bendjama, J. Clean. Prod., 54, 296 (2013).

    Article  CAS  Google Scholar 

  5. C. Peng, X. Yan, R. Wang, J. Lang, Y. Ou and Q. Xue, Electrochim. Acta, 87, 401 (2013).

    Article  CAS  Google Scholar 

  6. K. Yaghmaeian, G. Moussavi and A. Alahabadi, Chem. Eng. J., 236, 538 (2014).

    Article  CAS  Google Scholar 

  7. Q. Gao, H. Liu, C. Cheng, K. Li, J. Zhang, C. Zhang and Y. Li, Powder Technol., 249, 234 (2013).

    Article  CAS  Google Scholar 

  8. A. Yamashita, Y. Mori, T. Oshima and Y. Baba, Carbon, 76, 53 (2014).

    Article  Google Scholar 

  9. J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie and G. Xing, Appl. Surf. Sci., 320, 674 (2014).

    Article  CAS  Google Scholar 

  10. S. Yorgun, N. Vural and H. Demiral, Micropor. Mesopor. Mater., 122, 189 (2009).

    Article  CAS  Google Scholar 

  11. Y. Wang, H. Ngo and W Guo, Sci. Total Environ, 533, 32 (2015).

    Article  CAS  Google Scholar 

  12. X. Yao, J. Liu, G. Gong, Y. Jiang and Q. Xie, Int. J. Min. Sci. Tech., 23, 395 (2013).

    Article  CAS  Google Scholar 

  13. S. Ge, Y. Wu, W Peng, C. Xia, C. Mei, L. Cai, S. Shi, C. Sonne, S. S. Lam and Y. F. Tsang, Chem. Eng. J., 385, 123949 (2020).

    Article  Google Scholar 

  14. S. Ge, S. Y Foong, N. L. Ma, R. K. Liew, W. A. Wan Mahari, C. Xia, P. N. Y. Yek, W. Peng, W. L. Nam, X. Y. Lim, C. M. Liew, C. C. Chong, C. Sonne and S.S. Lam, Renew. Sust. Energ. Rev., 127, 109871 (2020).

    Article  CAS  Google Scholar 

  15. Y. Wu, C. Xia, L. Cai and S. Q. Shi, J. Colloid Interface Sci., 518, 41 (2018).

    Article  CAS  Google Scholar 

  16. C. Xia and S. Q. Shi, Green Chem., 18, 2063 (2016).

    Article  CAS  Google Scholar 

  17. H. Chang, W Wei, Z. Wang, H. Yang and R. Yao, Shanxi Coking Coal Sci. Tech., 2, 39 (2007).

    Google Scholar 

  18. K. S. Yang, D. J. Lee, S. K. Ryu, Y. Korai, Y. J. Kim and I. Mochida, Korean J. Chem. Eng., 16, 518 (1999).

    Article  CAS  Google Scholar 

  19. Y. Wu, L. Cai, C. Mei, S. S. Lam, C. Sonne, S. Q. Shi and C. Xia, Mater. Today Commun., 24, 101008 (2020).

    Article  CAS  Google Scholar 

  20. M. Ul-Islam, M. W Ullah, S. Khan and J. K Park, Korean J. Chem. Eng., 37, 925 (2020).

    Article  CAS  Google Scholar 

  21. Y. Wu, S. Ge, C. Xia, L. Cai, C. Mei, C. Sonne, Y. Park, Y. Kim, W. Chen, J. Chang and S.S. Lam, Bioresour. Technol., 313, 123675 (2020).

    Article  CAS  Google Scholar 

  22. Y. Ma, R. Niu, X. Wang, Q. Wang, X. Wang and X. Sun, Waste Manag. Res., 32, 1123 (2014).

    Article  Google Scholar 

  23. H. Wang, R. Xie, J. Zhang and J. Zhao, Adv. Powder Technol., 29, 27 (2018).

    Article  CAS  Google Scholar 

  24. X. Zhang, H. Tang, G. Chen, L. Qiao, J. Li, B. Liu, Z. Liu, M. Li and X. Liu, Eur. Food Res. Technol., 245, 2631 (2019).

    Article  CAS  Google Scholar 

  25. K. Y. Foo and B. H. Hameed, Bioresour. Technol., 112, 143 (2012).

    Article  CAS  Google Scholar 

  26. A. K. Prajapati and M. K. Mondal, Korean J. Chem. Eng., 36, 1900 (2019).

    Article  CAS  Google Scholar 

  27. Y. Zhu, W. Du, Y. Su and M. Zhu, Chin. Agr. Sci. Bull., 31, 26 (2015).

    Google Scholar 

  28. B. Tsyntsarski, B. Petrova, T. Budinova, N. Petrov, D. K. Teodosiev, A. Sarbu, T. Sandu, M. Ferhat Yardim and A. Sirkecioglu, Desalin. Water Treat., 52, 3445 (2014).

    Article  CAS  Google Scholar 

  29. M. Fan, S. Tong and C. Q. Jia, Int. J. Oil Gas Coal T., 8, 489 (2014).

    Article  CAS  Google Scholar 

  30. X. Zhang, W Wang, S. Luo and Q. Lin, J. Colloid Interface Sci., 553, 484 (2019).

    Article  CAS  Google Scholar 

  31. I. G. Stoycheva, B. G. Tsyntsarski, B. N. Petrova, B. Kumanek, T. K. Budinova and N. V Petrov, Water Air Soil Pollut., 227, 452 (2016).

    Article  Google Scholar 

  32. P. Yao, J. Cen, M. Fang, T. Wang and Q. Wang, RSC Adv., 8, 17558 (2018).

    Article  CAS  Google Scholar 

  33. G. Asgari, B. Roshani and G. Ghanizadeh, J. Hazard. Mater., 217–218, 123 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Key Research and Development Program (Guike AB18126087) and the National Key R&D Program (2018YFC1900904). The support from Sino-US-Japan Joint Laboratory on Organic Solid Waste Resource and Energy Technology of USTB is appreciated. Universiti Malaysia Terengganu under Golden Goose Research Grant Scheme (GGRG) (UMT/RMIC/2-2/25 Jld 5 (64), Vot 55191) for supporting Dr. Lam to perform this joint project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanfu Wu or Su Shiung Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, X., Xia, C. et al. Phenol removal via activated carbon from co-pyrolysis of waste coal tar pitch and vinasse. Korean J. Chem. Eng. 38, 64–71 (2021). https://doi.org/10.1007/s11814-020-0676-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0676-1

Keywords

Navigation