Skip to main content
Log in

Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles (DENs) that had a uniform size of ∼1.7nm for hydrolytic dehydrogenation of ammonia borane (AB). The PtPd DENs, composed of seven different Pt: Pd ratios, were synthesized using hydroxyl-terminated sixth-generation polyamidoamine dendrimers as a molecular template. The dendrimer-templating method allowed for synthesizing bimetallic PtPd DENs with controllable nanoparticle composition while fixing the size of the nanoparticles uniformly at ∼1.7 nm. Compared with monometallic Pt and Pd DENs, the bimetallic PtPd DENs showed superior catalytic activity for the hydrolytic dehydrogenation of AB. Furthermore, the bimetallic PtPd DENs exhibited composition-dependent activity with the maximum activity (i.e., average turnover frequency=108.5±15.9molH2·molatom Pt+pd−1·min−1) at a Pt: Pd ratio of 1:1 for the catalytic hydrolysis of AB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Stephens, V. Pons and R. T. Baker, Dalton Trans., 25, 2613 (2007).

    Google Scholar 

  2. N. C. Smythe and J. C. Gordon, Eur. J. Inorg. Chem, 2010, 509 (2010).

    Google Scholar 

  3. C. W. Hamilton, R. T. Baker, A. Staubitz and I. Manners, Chem. Soc. Rev., 38, 279 (2009).

    CAS  PubMed  Google Scholar 

  4. H.-L. Jiang and Q. Xu, Catal. Today, 170, 56 (2011).

    CAS  Google Scholar 

  5. Q. Xu and M. Chandra, J. Alloys Compd., 446–447, 729 (2007).

    Google Scholar 

  6. W.-W. Zhan, Q.-L. Zhu and Q. Xu, ACS Catal., 6, 6892 (2016).

    CAS  Google Scholar 

  7. D. Sun, V. Mazumder, Ö. Metin and S. Sun, ACS Nano, 5, 6458 (2011).

    CAS  PubMed  Google Scholar 

  8. Z.-H. Lu, J. Li, A. Zhu, Q. Yao, W. Huang, R. Zhou, R. Zhou and X. Chen, Int. J. Hydrogen Energy, 38, 5330 (2013).

    CAS  Google Scholar 

  9. H. Dai, J. Su, K. Hu, W. Luo and G. Cheng, Int. J. Hydrogen Energy, 39, 4947 (2014).

    CAS  Google Scholar 

  10. X. Peng, Q. Pan and G. L. Rempel, Chem. Soc. Rev., 37, 1619 (2008).

    PubMed  PubMed Central  Google Scholar 

  11. M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 41, 8099 (2012).

    CAS  PubMed  Google Scholar 

  12. F. Tao, Chem. Soc. Rev., 41, 7977 (2012).

    CAS  PubMed  Google Scholar 

  13. A. Wang, X. Y. Liu, C.-Y. Mou and T. Zhang, J. Catal., 308, 258 (2013).

    CAS  Google Scholar 

  14. M. Rakap, J. Power Sources, 276, 320 (2015).

    CAS  Google Scholar 

  15. Z. Zhang, Y. Jiang, M. Chi, Z. Yang, C. Wang and X. Lu, RSC Adv., 5, 94456 (2015).

    CAS  Google Scholar 

  16. A. J. Amali, K. Aranishi, T. Uchida and Q. Xu, Part. Part. Syst. Charact., 30, 888 (2013).

    CAS  Google Scholar 

  17. K. Yao, C. Zhao, N. Wang, T. Li and W. Lu, J. Wang, Nanoscale, 12, 638 (2020).

    CAS  PubMed  Google Scholar 

  18. Z. Wang, H. Zhang, L. Chen, S. Miao, S. Wu, X. Hao, W. Zhang and M. Jia, J. Phys. Chem. C, 122, 12975 (2018).

    CAS  Google Scholar 

  19. M. Zhao, L. Sun and R. M. Crooks, J. Am. Chem. Soc., 120, 4877 (1998).

    CAS  Google Scholar 

  20. L. Balogh and D. A. Tomalia, J. Am. Chem. Soc., 120, 7355 (1998).

    CAS  Google Scholar 

  21. R. W. J. Scott. O. M. Wilson and R. M. Crooks, J. Phys. Chem. B, 109, 692 (2005).

    CAS  PubMed  Google Scholar 

  22. M. Zhao and R. M. Crooks, Angew. Chem. Int. Ed., 38, 364 (1999).

    CAS  Google Scholar 

  23. R. M. Crooks and M. Zhao, Adv. Mater., 11, 217 (1999).

    Google Scholar 

  24. R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, Acc. Chem. Res., 34, 181 (2001).

    CAS  PubMed  Google Scholar 

  25. V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande and R. M. Crooks, Chem. Sci., 2, 1632 (2011).

    CAS  Google Scholar 

  26. Y. Niu, L. K. Yeung and R. M. Crooks, J. Am. Chem. Soc., 123, 6840 (2001).

    CAS  Google Scholar 

  27. M. Ooe, M. Murata, T. Mizugaki, K. Ebitani and K. Kaneda, Nano Lett., 2, 999 (2002).

    CAS  Google Scholar 

  28. C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste and G. A. Somorjai, J. Am. Chem. Soc., 139, 18084 (2017).

    CAS  PubMed  Google Scholar 

  29. D. Ke, Y. Li, J. Wang, L. Zhang, J. Wang, X. Zhao, S. Yang and S. Han, Int. J. Hydrogen Energy, 41, 2564 (2016).

    CAS  Google Scholar 

  30. K. Esumi, R. Isono and T. Yoshimura, Langmuir, 20, 237 (2004).

    CAS  PubMed  Google Scholar 

  31. H. Ye and R. M. Crooks, J. Am. Chem. Soc., 127, 4930 (2005).

    CAS  PubMed  Google Scholar 

  32. M. Ooe, M. Murata, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am. Chem. Soc., 126, 1604 (2004).

    CAS  PubMed  Google Scholar 

  33. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001).

    CAS  Google Scholar 

  34. J. C. Garcia-Martinez, R. Lezutekong and R. M. Crooks, J. Am. Chem. Soc., 127, 5097 (2005).

    CAS  PubMed  Google Scholar 

  35. T. Cho, C. W. Yoon and J. Kim, Langmuir, 34, 7436 (2018).

    CAS  PubMed  Google Scholar 

  36. H. Lim, Y. Ju and J. Kim, Anal. Chem, 88, 4751 (2016).

    CAS  PubMed  Google Scholar 

  37. K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga and A. Sonoi, Nat. Chem, 1, 397 (2009).

    CAS  PubMed  Google Scholar 

  38. H. Ye and R. M. Crooks, J. Am. Chem. Soc., 129, 3627 (2007).

    CAS  PubMed  Google Scholar 

  39. Y.-M. Chung and H.-K. Rhee, Catal. Lett., 85, 159 (2003).

    CAS  Google Scholar 

  40. Y.-M. Chung and H.-K. Rhee, Catal. Surv. from Asia, 8, 211 (2004).

    CAS  Google Scholar 

  41. K. Aranishi, A. K. Singh and Q. Xu, ChemCatChem, 5, 2248 (2013).

    CAS  Google Scholar 

  42. R. W. J. Scott, A. K. Datye and R. M. Crooks, J. Am. Chem. Soc., 125, 3708 (2003).

    CAS  PubMed  Google Scholar 

  43. Y. Ju and J. Kim, Chem. Commun., 51, 13752 (2015).

    CAS  Google Scholar 

  44. H. Ye, J. A. Crooks and R. M. Crooks, Langmuir, 23, 11901 (2007).

    CAS  PubMed  Google Scholar 

  45. J.-C. Bertolini, Appl. Catal. A-Gen., 191, 15 (2000).

    CAS  Google Scholar 

  46. R. W. J. Scott, C. Sivadinarayana, O. M. Wilson, Z. Yan, D. W. Goodman and R. M. Crooks, J. Am. Chem. Soc., 127, 1380 (2005).

    CAS  PubMed  Google Scholar 

  47. E. A. Lewis, T. J. A. Slater, E. Prestat, A. Macedo, P. O’Brien, P. H. C. Camargo and S. J. Haigh, Nanoscale, 6, 13598 (2014).

    CAS  PubMed  Google Scholar 

  48. C.-M. Wang, A. Genc, H. Cheng, L. Pullan, D. R. Baer and S. M. Bruemmer, Sci. Rep., 4, 3683 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. W. P. Davey, Phys. Rev., 25, 753 (1925).

    CAS  Google Scholar 

  50. J. Wu, S. Shan, H. Cronk, F. Chang, H. Kareem, Y. Zhao, J. Luo, V. Petkov and C.-J. Zhong, J. Phys. Chem. C, 121, 14128 (2017).

    CAS  Google Scholar 

  51. H. Zhang, M. Jin, H. Liu, J. Wang, M. J. Kim, D. Yang, Z. Xie, J. Liu and Y. Xia, ACS Nano, 5, 8212 (2011).

    CAS  PubMed  Google Scholar 

  52. M. Chandra and Q. Xu, J. Power Sources, 156, 190 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2019M3E6A1065038 and NRF-2016M1A2A2936638) and the KIST Institutional Program (2Z05790-19-037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohoon Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_604_MOESM1_ESM.pdf

Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Y., Kim, J. Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane. Korean J. Chem. Eng. 37, 1387–1393 (2020). https://doi.org/10.1007/s11814-020-0604-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0604-4

Keywords

Navigation