Skip to main content

Advertisement

Log in

Experimental study on thermo-hydraulic performance of nanofluids in diverse axial ratio elliptical tubes with a built-in turbulator

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Due to the low heat transfer efficiency of common heat exchange systems, an improved heat exchange system was developed. Enhanced tubes (elliptical tubes with a built-in turbulator) instead of a smooth tube were used and TiO2-water nanofluids were substituted for water to intensify the heat transfer. The influences of turbulator (presence or absence), axial ratios of elliptical tubes (Z=1.235, 1.471, 1.706), nanoparticle concentration (ω=0.0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%), and Reynolds number (Re=400–12,000) on the flow and heat transfer properties of TiO2-water nanofluids were studied. Thermal and exergy efficiency were used to research the comprehensive thermo-hydraulic characteristics of these heat transfer enhancement technologies. The thermo-hydraulic properties of nanofluids all showed an increasing trend with the growing axial ratio, nanoparticle concentration and Reynolds number. Nanofluids (ω=0.5 wt%) in an elliptical tube (Z=1.706) with a built-in turbulator showed the best thermal performance, which could be increased by 33.8% in comparison with water at best. The thermal efficiency index increased first and then decreased with the Re. Nanofluids in elliptical tubes with a built-in turbulator can clearly promote heat transfer under the identical condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

radius of the long axis [mm]

b:

radius of the short axis [mm]

c p :

heat volume of fluid [J·kg−1·K−1]

de :

equivalent diameter [m]

f:

frictional resistance coefficient

h:

convective heat transfer coefficient [W·m−2I·K−1]

H:

width of turbulator [mm]

I:

electric current [A]

k:

thermal conductivity of tube [W·m−1·K−1]

L:

length [m]

Nu:

Nusselt number

P:

element length of tabulator [mm]

Δp/Δl :

pressure drop per unit length [Pa·m−1]

Q:

heat exchange amount [J]

Qj :

heating power of DC power [J]

Qje :

effective heating power of DC power [J]

Qloss :

heatloss[J]

Qr :

heat absorbed by nanofluids [J]

qm :

mass flow rate [kg·s−1]

U:

voltage [V]

r:

radius [m]

Re:

Reynolds number

T:

temperature [K]

u:

velocity [m·s−1]

Z:

axial ratios

δ :

thickness [m]

η :

thermalefficiencyindex

λ f :

thermal conductivity of fluid [W·m−1·K−1]

μnf :

dynamic viscosity [Pa·s]

ρ :

density of fluid [kg·m−3]

ω :

mass fraction [%]

bf:

base fluid

in:

import

nf:

nanofluids

out:

outport

w:

wall

References

  1. X. Wang, Y. Yan, X. Meng and G. Chen, Appl. Therm. Eng., 157, 113761 (2019).

    Google Scholar 

  2. X. Wang, X. Gao, K. Bao, C. Hua, X. Han and G. Chen, J. Therm. Sri., 28(2), 246 (2019).

    Google Scholar 

  3. A. Alirezaie, M. H. Hajmohammad, M. R. H. Ahangar and M. H. Esfe, Appl. Therm. Eng., 128, 373 (2018).

    CAS  Google Scholar 

  4. Y. S. Daniel, Z. A. Aziz, Z. Ismail, A. Bahar and F. Salah, Korean J. Chem. Eng., 36, 1021 (2019).

    CAS  Google Scholar 

  5. X. Liu and Y. Xuan, Nanoscale, 9, 14854 (2017).

    CAS  PubMed  Google Scholar 

  6. X. Liu and Y. Xuan, Sol. Energy, 146, 503 (2017).

    CAS  Google Scholar 

  7. A. Asadi, M. Asadi, A. Rezaniakolaei, L. A. Rosendahl, M. Afrand and S. Wongwises, Int. J. Heat Mass Transf., 117, 474 (2018).

    CAS  Google Scholar 

  8. P. Samira, Z. H. Saeed, S. Motahare and K. Mostafa, Korean J. Chem. Eng., 32, 609 (2015).

    CAS  Google Scholar 

  9. M. Nasiri, S. G. Etemad and R. Bagheri, Korean J. Chem. Eng., 28, 2230 (2011).

    CAS  Google Scholar 

  10. M. A. Sheremet, I. Pop and O. Mahian, Int. J. Heat Mass Transf., 116, 751 (2018).

    CAS  Google Scholar 

  11. M. S. Astanina, M. A. Sheremet, H. F. Oztop and N. Abu-Hamdeh, Int. J. Heat Mass Transf., 118, 527 (2018).

    CAS  Google Scholar 

  12. I. V. Miroshnichenko, M. A. Sheremet, H. F. Oztop and N. Abu-Hamdeh, Int. J Heat Mass Transf., 125, 648 (2018).

    CAS  Google Scholar 

  13. S. A. Mikhailenko, M. A. Sheremet, H. F. Oztop and N. Abu-Hamdeh, Int. J. Mech Sei, 156, 137 (2019).

    Google Scholar 

  14. F. Selimefendigil and H. F. Öztop, Int. J. Heat Mass Transf., 129, 265 (2019).

    CAS  Google Scholar 

  15. M. Izadi, A. Behzadmehr and M. M. Shahmardan, Korean J. Chem. Eng., 31, 12 (2014).

    CAS  Google Scholar 

  16. H. Sajjadi, A. A. Delouei, M. Izadi and R. Mohebbi, Int. J. Heat Mass Transf., 132, 1087 (2019).

    CAS  Google Scholar 

  17. R. Mohebbi, M. Izadi, H. Sajjadi, A. A. Delouei and M. A. Sheremet, Physica A, 526, 120831 (2019).

    Google Scholar 

  18. Y. Hu, Y. He, H. Gao and Z. Zhang, Appl. Therm. Eng, 155, 650 (2019).

    CAS  Google Scholar 

  19. Z. Li, A. Shahsavar, A. A. Al-Rashed and P. Talebizadehsardari, Appl. Therm. Eng, 167, 114777 (2020).

    Google Scholar 

  20. X. Ma, M. Sheikholeslami, M. Jafaryar, A. Shafee, T. Nguyen-Thoi and Z. Li, J Clean Prod, 245, 118888 (2018).

    Google Scholar 

  21. Z. Li, M. Sheikholeslami, M. Ayani, M. Shamlooei, A. Shafee, M. Waly and I. Tlili, Physica A, 524, 540 (2019).

    Google Scholar 

  22. M. Sheikholeslami, A. Arabkoohsar, I. Khand, A. Shafee and Z. Li, J. Clean. Prod, 221, 885 (2019).

    CAS  Google Scholar 

  23. Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Comput. Method. Appl. Mech. Eng., 338, 618 (2018).

    Google Scholar 

  24. M. Sheikholeslami, M. Jafaryar, D. D. Ganji and Z. Li, J. Mol. Liq., 262, 104 (2018).

    CAS  Google Scholar 

  25. M. Sheikholeslami, M. Jafaryar and Z. Li, Int. J. Heat Mass Transf., 124, 980 (2018).

    CAS  Google Scholar 

  26. A. A. Al-Rashed, A. Shahsavar, S. Entezari, M. A. Moghimi, S. A. Adio and T. K. Nguyen, Appl. Therm. Eng., 155, 247 (2019).

    CAS  Google Scholar 

  27. A. A. Al-Rashed, R. Ranjbarzadeh, S. Aghakhani, M. Soltanimehr, M. Afrand and T. K. Nguyen, Physica A, 521, 724 (2019).

    CAS  Google Scholar 

  28. J. Alsarraf, A. Moradikazerouni, A. Shahsavar, M. Afrand, H. Salehipour and M. D. Tran, Physica A, 520, 275 (2019).

    CAS  Google Scholar 

  29. M. Nojoomizadeh, A. Karimipour, M. Firouzi and M. Afrand, Int. J Heat Mass Transf., 119, 891 (2018).

    CAS  Google Scholar 

  30. P. Naphon, L. Nakharintr and S. Wiriyasart, Int. J. Heat Mass Transf., 126, 924 (2018).

    CAS  Google Scholar 

  31. M. U. Sajid and H. M. Ali, Renew. Sust. Energy Rev, 103, 556 (2019).

    CAS  Google Scholar 

  32. M. M. Sarafraz, V. Nikkhah, M. Nakhjavani and A. Arya, Exp. Therm. Fluid Sci., 91, 509 (2018).

    CAS  Google Scholar 

  33. M. M. Sarafraz, H. Arya and M. Arjomandi, J. Mol. Liq., 263, 382 (2018).

    CAS  Google Scholar 

  34. M. M. Sarafraz, M. R. Safaei, Z. Tian, M. Goodarzi, E. P. Bandarra Filho and M. Arjomandi, Energies, 12, 1929 (2019).

    CAS  Google Scholar 

  35. M. Nasiri, S. G. Etemad and R. Bagheri, Korean J. Chem. Eng., 28, 2230 (2011).

    CAS  Google Scholar 

  36. S. Kim, H. Yoo and C. Kim, Korean J. Chem. Eng., 29, 1321 (2012).

    CAS  Google Scholar 

  37. R. Mohebbi, M. Izadi, A. A. Delouei and H. Sajjadi, J. Therm. Anal. Calorim, 135, 3029 (2018).

    Google Scholar 

  38. B. Sun, A. Yang and D. Yang, Int. J. Heat Mass Transf., 107, 712 (2017).

    CAS  Google Scholar 

  39. A. Karimi, A. A. Al-Rashed, M. Afrand, O. Mahian, S. Wongwises and A. Shahsavar, Int. J. Mech. Sci., 156, 397 (2019).

    Google Scholar 

  40. P. Naphon and S. Wiriyasart, Int. J. Heat Mass Transf., 118, 297 (2018).

    CAS  Google Scholar 

  41. P. Naphon and S. Wiriyasart, Int. J. Heat Mass Transf., 125, 1054 (2018).

    CAS  Google Scholar 

  42. P. Naphon, S. Wiriyasart and T. Arisariyawong, Int. J. Heat Mass Transf., 118, 1152 (2018).

    CAS  Google Scholar 

  43. C. Qi, M. Liu, G. Wang, Y. Pan and L. Liang, Chin. J. Chem. Eng., 26, 2420 (2018).

    CAS  Google Scholar 

  44. C. Qi, L. Yang, T. Chen and Z. Rao, Appl. Therm. Eng., 129, 1315 (2018).

    CAS  Google Scholar 

  45. B. C. Pak and Y. I. Cho, Exp. Heat. Transf., 11, 151 (1998).

    CAS  Google Scholar 

  46. C. Qi, Y. L. Wan, C. Y. Li, D. T. Han and Z. H. Rao, Int. J. Heat Mass Transf., 115, 1072 (2017).

    CAS  Google Scholar 

  47. C. Qi, G. Wang, Y. Yan, S. Mei and T. Luo, Energy Convers. Manage, 166, 744 (2018).

    CAS  Google Scholar 

  48. S. J. Kline, Mech. Eng., 75, 3 (1953).

    Google Scholar 

  49. E. N. Sieder and G. E. Tate, Ind. Eng. Chem, 28, 1429 (1936).

    CAS  Google Scholar 

  50. V. Gnielinski, Int. Chem. Eng., 16, 359 (1976).

    Google Scholar 

  51. C. Qi, L. Liang and Z. Rao, Int. J. Heat Mass Transf., 94, 316 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Chen, T., Wang, Y. et al. Experimental study on thermo-hydraulic performance of nanofluids in diverse axial ratio elliptical tubes with a built-in turbulator. Korean J. Chem. Eng. 37, 1466–1481 (2020). https://doi.org/10.1007/s11814-020-0566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0566-6

Keywords

Navigation