Skip to main content
Log in

Enhanced Cr tolerance of perovskite oxide via Gd0.1Ce0.9O2 surface modifications

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cr poisoning of the SUS interconnect and the solid oxide fuel cell electrode is one of the crucial hurdles to achieving system sustainability. Among various approaches to solving this issue, the suppression of cation segregation, especially Sr, and preventing the electrode surface from direct exposure to Cr-gas have been considered the most important factors. Herein, the effect of surface coating on mitigating Sr segregation as well as the use of strategies for protecting the electrode surface from exposure to Cr gas are discussed. Using Sm0.5Sr0.5CoO3(SSC) as a model film electrode and Gd0.1Ce0.9O2 (GDC) as the coating layer via a pulsed laser deposition (PLD) method, the Cr tolerance of the perovskite oxide electrode was enhanced. Electrochemical measurement at 650 °C for 200 h showed ∼2.5 times higher stability of the GDC-coated SSC electrode than the bare SSC electrode. Using Auger electron spectroscopy (AES), the chemical states of the GDC-coated SSC electrode were characterized, revealing significantly reduced Sr and Cr intensity on the surface of the coated electrode when compared to the bare SSC electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Wachsman and K. T. Lee, Science, 334, 935 (2011).

    Article  CAS  Google Scholar 

  2. Z. Yang, K. S. Weil, D. M. Paxton and J. W. Stevenson, J. Electrochem. Soc., 150, A1188 (2003).

    Article  CAS  Google Scholar 

  3. E. Zanchi, B. Talic, A. Sabato, S. Molin, A. Boccaccini and F. Smeacetto, J. Eur. Ceram. Soc., 39, 3768 (2019).

    Article  CAS  Google Scholar 

  4. P. Y. Hou, K. Huang, W. T. Bakker, ECS Proceedings Volumes, 1999, 737 (1999).

    Article  Google Scholar 

  5. N. Ni, S. J. Cooper, R. Williams, N. Kemen, D. W. McComb and S. J. Skinner, ACS Appl. Mater. Interfaces, 8, 17360 (2016).

    Article  CAS  Google Scholar 

  6. Y. Chen, S. Yoo, X. Li, D. Ding, K. Pei, D. Chen, Y. Ding, B. Zhao, R. Murphy and B. Deglee, Nano Energy, 47, 474 (2018).

    Article  CAS  Google Scholar 

  7. J. Li, J. Li, D. Yan, J. Pu, B. Chi and L. Jian, Electrochim. Acta, 270, 294 (2018).

    Article  CAS  Google Scholar 

  8. B. Wei, M. Schroeder and M. Martin, ACS Appl. Mater. Interfaces, 10, 8621 (2018).

    Article  CAS  Google Scholar 

  9. W. Lee, J. W. Han, Y. Chen, Z. Cai and B. Yildiz, J. Am. Chem. Soc., 135, 7909 (2013).

    Article  CAS  Google Scholar 

  10. J. Y. Koo, H. Kwon, M. Ahn, M. Choi, J.-W. Son, J. W. Han and W. Lee, ACS Appl. Mater. Interfaces, 10, 8057 (2018).

    Article  CAS  Google Scholar 

  11. T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, M. E. Brito and H. Yokokawa, J. Electrochem. Soc., 157, B614 (2010).

    Article  CAS  Google Scholar 

  12. S. Geng, Y. Pan, G. Chen and F. Wang, Int. J. Hydrogen Energy, 44, 9400 (2019).

    Article  CAS  Google Scholar 

  13. Y. Chen, W. Jung, Z. Cai, J. J. Kim, H. L. Tuller and B. Yildiz, Energy Environ. Sci., 5, 7979 (2012).

    Article  CAS  Google Scholar 

  14. W. Jung and H. L. Tuller, Energy Environ. Sci., 5, 5370 (2012).

    Article  CAS  Google Scholar 

  15. Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu, Y. Chen and M. Liu, Chem. Soc. Rev., 46, 6345 (2017).

    Article  CAS  Google Scholar 

  16. D. Kim, J. W. Park, B.-H. Yun, J. H. Park and K. T. Lee, ACS Appl. Mater. Interfaces, 11, 31786 (2019).

    Article  CAS  Google Scholar 

  17. M. Zhao, S. Geng, G. Chen and F. Wang, J. Power Sources, 414, 530 (2019).

    Article  CAS  Google Scholar 

  18. N. Demeneva, O. Kononenko, D. Matveev, V. Kharton and S. Bredikhin, Mater. Lett., 240, 201 (2019).

    Article  CAS  Google Scholar 

  19. H. Chen, Z. Guo, L. A. Zhang, Y. Li, F. Li, Y. Zhang, Y. Chen, X. Wang, B. Yu and J.-M. Shi, ACS Appl. Mater. Interfaces, 10, 39785 (2018).

    Article  CAS  Google Scholar 

  20. Y. Wen, T. Yang, D. Lee, H. N. Lee, E. J. Crumlin and K. Huang, J. Mater. Chem. A, 6, 24378 (2018).

    Article  CAS  Google Scholar 

  21. N. Tsvetkov, Q. Lu, L. Sun, E. J. Crumlin and B. Yildiz, Nat. Mater., 15, 1010 (2016).

    Article  CAS  Google Scholar 

  22. D. Kim, R. Bliem, F. Hess, J.-J. Gallet and B. Yildiz, J. Am. Chem. Soc., 7, 3548 (2020).

    Article  Google Scholar 

  23. F. Hess and B. Yildiz, Phys. Rev. Mater., 4, 015801 (2020).

    Article  CAS  Google Scholar 

  24. K. Chen, N. Li, N. Ai, M. Li, Y. Cheng, W. D. Rickard, J. Li and S. P. Jiang, J. Mater. Chem. A, 4, 17678 (2016).

    Article  CAS  Google Scholar 

  25. M. E. Lynch, L. Yang, W. Qin, J.-J. Choi, M. Liu, K. Blinn and M. Liu, Energy Environ. Sci., 4, 2249 (2011).

    Article  CAS  Google Scholar 

  26. Z. Cai, M. Kubicek, J. r. Fleig and B. Yildiz, Chem. Mater., 24, 1116 (2012).

    Article  CAS  Google Scholar 

  27. K. Jacob and K. Abraham, J. Phase Equilib., 21, 46 (2000).

    Article  CAS  Google Scholar 

  28. J. Druce, H. Tellez, M. Burriel, M. Sharp, L. Fawcett, S. Cook, D. McPhail, T. Ishihara, H. Brongersma and J. Kilner, Energy Environ. Sci., 7, 3593 (2014).

    Article  CAS  Google Scholar 

  29. B. Koo, H. Kwon, Y. Kim, H. G. Seo, J. W. Han and W. Jung, Energy Environ. Sci., 11, 71 (2018).

    Article  CAS  Google Scholar 

  30. M. Choi, I. A. M. Ibrahim, K. Kim, J. Y. Koo, S. J. Kim, J.-W. Son, J. W. Han and W. Lee, ACS Appl. Mater. Interfaces, 12, 21494 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010032170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyoung Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Kim, S., Paik, J. et al. Enhanced Cr tolerance of perovskite oxide via Gd0.1Ce0.9O2 surface modifications. Korean J. Chem. Eng. 37, 1346–1351 (2020). https://doi.org/10.1007/s11814-020-0562-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0562-x

Keywords

Navigation