Skip to main content
Log in

Formation of calcium carbonates from Ca(OH)2-H2O-supercritical CO2 using a rapid spraying method

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Particle formation techniques using supercritical fluid are simple processes that can control particle size and morphology, although high-pressure is required. The purpose of this study was to investigate how the experimental conditions affect the extent and rate of CaCO3 conversion and the size and morphology of the precipitated CaCO3 from the carbonation tests with rapid spraying of reactants causing rapid depressurization of supercritical fluid. The relatively low temperature and pressure conditions (35 °C and 7.5MPa) resulted in low CaCO3 conversion efficiency (41.4–51.9%), high vaterite content (70–78%) of CaCO3, and smaller-sized particles. The relatively high temperature and pressure conditions (80 °C and 12.0MPa) resulted in high CaCO3 conversion efficiency (66.8–73.2%), high calcite content (50–80%) of CaCO3, and larger-sized particles. The particle size of solid products ranged between 20 and 180nm with approximately a peak of 100 nm in the particle size distribution (PSD) curve, irrespective of the test conditions; however, shorter reaction times led to smaller particles. The optimal conditions under which the extent of CaCO3 conversion and calcite content were maximum were 50 °C, 9.0MPa, and 1 h of reaction time (CaCO3 conversion: 92.9%; calcite content of CaCO3: 87%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Söhnel and J.W. Mullin, J. Cryst. Growth, 60, 239 (1982).

    Article  Google Scholar 

  2. N. H. Leeuw and S. C. Parker, J. Phys. Chem., 102, 2914 (1998).

    Article  Google Scholar 

  3. F. Lippmann, Sedimentary carbonate minerals, Springer Science & Business Media, Berlin (1973).

    Book  Google Scholar 

  4. S.R. Dickinson, G. E. Henderson and K.M. McGrath, J. Cryst. Growth, 244, 369 (2002).

    Article  CAS  Google Scholar 

  5. D. J. Hwang, J.Y. Ryu, Y.H. Yu, K.H. Cho, J.W. Ahn and C. Han, J. Ind. Eng. Chem., 20, 2727 (2014).

    Article  CAS  Google Scholar 

  6. C. Domingo, E. Loste, J. Gomez-Morales and J. Garcia-Carmona, J. Fraile, J. Supercrit. Fluids, 36, 202 (2006).

    Article  CAS  Google Scholar 

  7. A. M. López-Periago, R. Pacciani, C. García-Gonzalez, L. F. Vega and C. Domingo, J. Supercrit. Fluids, 52, 298 (2010).

    Article  Google Scholar 

  8. W. Gu, D.W. Bousfield and C. P. Tripp, J. Mater. Chem., 16, 3312 (2006).

    Article  CAS  Google Scholar 

  9. G. Montes-Hernandez, F. Renard, N. Geoffroy, L. Charlet and J. Pironon, J. Cryst. Growth, 308, 228 (2007).

    Article  CAS  Google Scholar 

  10. J. Li and E. G. Azevedo, Recent. Pat. Chem. Eng., 1, 157 (2008).

    Article  CAS  Google Scholar 

  11. D. Lozowski, Chem. Eng., 117, 15 (2010).

    Google Scholar 

  12. O. Regnault, V. Lagneau and H. Schneider, Chem. Geol., 265, 113 (2009).

    Article  CAS  Google Scholar 

  13. A.M. López-Periago, R. Pacciani, C. García-Gonzalez, L. F. Vega and C. Domingo, Cryst. Growth Des., 52, 298 (2011).

    Google Scholar 

  14. P. Hawae, N. Chusri, P. Sumanatrakul and C. Siripatana, PACCON2015 (2015).

    Google Scholar 

  15. M. Mchugh and V. Krukonis, Supercritical fluid extraction: principles and practice, Butterworth, Stoneham (1986).

    Google Scholar 

  16. P.G. Debenedetti, AIChE J., 36, 1289 (1990).

    Article  CAS  Google Scholar 

  17. I. Pane and W. Hansen, Cem. Concr. Res., 35, 1155 (2005).

    Article  CAS  Google Scholar 

  18. C.G. Kontoyannis and N.V. Vagenas, Analyst, 125, 251 (2000).

    Article  CAS  Google Scholar 

  19. Z.G. Wu, J. Wang, Y. Guo and Y.R. Jia, Cryst. Res. Technol., 53, 1700120 (2018).

    Article  Google Scholar 

  20. J. Chen and L. Xiang, Powder Technol., 189, 64 (2009).

    Article  CAS  Google Scholar 

  21. A. Niedermayr, S. J. Köhler and M. Dietzel, Chem. Geol., 340, 105 (2013).

    Article  CAS  Google Scholar 

  22. D.H. Chu, M. Vinoba, M. Bhagiyalakshmi, I. H. Baek, S. C. Nam, Y. Yoon, S. H. Kim and S. K. Jeong, RSC Adv., 3, 21722 (2013).

    Article  CAS  Google Scholar 

  23. T. Zhao, B. Guo, F. Zhang, F. Sha, Q. Li and J. Zhang, ACS Appl. Mater. Interfaces, 7, 15918 (2015).

    Article  CAS  Google Scholar 

  24. D. Konopacka-Łyskawa, B. Kościelska and J. Karczewski, Mater. Chem. Phys., 192, 13 (2017).

    Article  Google Scholar 

  25. J. Jiang, Y. Wu, C. Chen, X. Wang, H. Zhao, S. Xu, C. C. Yang and B. Xiao, Adv. Powder Technol., 29, 2416 (2018).

    Article  CAS  Google Scholar 

  26. Y. Ding, Y. Liu, Y. Ren, H. Yan, M. Wang, D. Wang, X. Y. Lu, B. Wang, T. Fan and H. Guo, Powder Technol., 333, 410 (2018).

    Article  CAS  Google Scholar 

  27. Z.G. Wu, J. Wang, Y. Guo and Y.R. Jia, Cryst. Res. Technol., 53, 1700120 (2018).

    Article  Google Scholar 

  28. J. Zhang, C. Zhao, A. Zhou, C. Yang, L. Zhao and Z. Li, Constr. Build. Mater., 224, 815 (2019).

    Article  CAS  Google Scholar 

  29. W. Pabst and E. Gregorová, ICP Prague 2007 (2007).

    Google Scholar 

  30. H.G. Merkus, Particle size measurements: fundamentals, practice, quality, Springer, Berlin (2012).

    Google Scholar 

  31. S. Goto, K. Suenaga, T. Kado and M. Fukuhara, J. Am. Ceram. Soc., 78, 2867 (1995).

    Article  CAS  Google Scholar 

  32. K. Vance, G. Falzone, I. Pignatelli, M. Bauchy, M. Balonis and G. Sant, Ind. Eng. Chem. Res., 54, 8908 (2015).

    Article  CAS  Google Scholar 

  33. Z.V. Padanyi, Solid State Commun., 8, 541 (1970).

    Article  CAS  Google Scholar 

  34. J. Harris, I. Mey, M. Hajir, M. Mondeshki and S. E. Wolf, Cryst. Eng. Comm., 17, 36 (2015).

    Article  Google Scholar 

  35. N. Spanos and P.G. Koutsoukos, J. Cryst. Growth, 191, 783 (1998).

    Article  CAS  Google Scholar 

  36. Y.S. Han, G. Hadiko, M. Fuji and M. Takahashi, J. Cryst. Growth, 276, 541 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF-2017R1A2B4008238) of the Ministry of Science, ICT & Future Planning, Korea. This work was partly supported by Korea Environment Industry & Technology Institute (KEITI) through Subsurface Environment Management (SEM) Project, funded by Korea Ministry of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Young Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Jo, H.Y. Formation of calcium carbonates from Ca(OH)2-H2O-supercritical CO2 using a rapid spraying method. Korean J. Chem. Eng. 37, 1086–1096 (2020). https://doi.org/10.1007/s11814-020-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0518-1

Keywords

Navigation