Skip to main content
Log in

Separation of methanol-chloroform mixture using pressure-swing distillation: Modeling and optimization

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The separation of methanol-chloroform mixture, a minimum-boiling azeotrope, is performed using pressure- swing distillation process via process simulation. In this study, the steady-state optimization was carried out using PRO/II with PROVISION v.10. The two different column configurations (low-to-high pressure and high-to-low pressure) were compared wherein the positions of the low-pressure column and high-pressure column were operated interchangeably to attain an optimized design. Additionally, different heat-integration configurations (partial heat- and full heat-integration) were applied to lessen the overall utility consumption. It was determined that the low-to-high pressure column configuration provided a more optimized result for all heat-integrated systems as compared to high-tolow pressure column configuration. Application of heat-integration further decreases the cooling water and steam consumption by 38.86% and 35.74%, respectively, for partial heat-integrated system, and by 44.58% and 41.01%, respectively, for full heat-integrated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Schengrund and P. Kovac, J. Lipid Res., 40, 160 (1999).

    CAS  PubMed  Google Scholar 

  2. K. H. Row and Y. Jin, Bioresour. Technol., 97(5), 790 (2006).

    Article  CAS  Google Scholar 

  3. R. Van Kaam, I. Rodriguez-Donis and V. Gerbaud, Chem. Eng. Sci., 63, 78 (2008).

    Article  Google Scholar 

  4. H.-J. Kang and J.-H. Kim, Korean J. Chem. Eng., 36(12), 1965 (2019).

    Article  CAS  Google Scholar 

  5. J. Gmehling, J. Menke, J. Krafczyk, K. Fischer, J.-C. Fontaine and H.V. Kehiaian, Fluid properties. in: Handbook of chemistry and physics, 92th Ed., CRC Press, Boca Raton (2005).

    Google Scholar 

  6. J. A. Dean, Physical properties. Lange’s handbook of chemistry, 15th Ed., McGraw-Hill, New York (1999).

    Google Scholar 

  7. P. Langston, N. Hilal, S. Shingfield and S. Webb, Chem. Eng. Process., 44, 345 (2005).

    Article  CAS  Google Scholar 

  8. Y. Wang, G. Bu, Y. Wang, T. Zhao, Z. Zhang and Z. Zhu, Comput. Chem. Eng., 95, 97 (2016).

    Article  CAS  Google Scholar 

  9. E. Hosgor, T. Kucuk, I. N. Oskal and D.B. Kaymak, Comput. Chem. Eng., 67, 166 (2014).

    Article  CAS  Google Scholar 

  10. Z. Lei, B. Chen and Z. Ding, Special distillation processes, Elsevier, Amsterdam (2005).

    Google Scholar 

  11. Q. Li, L. Cao, Y. Zhang, P. Liu and B. Wang, J. Chem. Eng. Data, 59, 234 (2014).

    Article  CAS  Google Scholar 

  12. T. Hiaki, K. Kurihara and K. Kojima, J. Chem. Eng. Data, 39, 714 (1994).

    Article  Google Scholar 

  13. I. I. Vasil’eva, A. N. Marinichev and M. P. Susarev, Deposited Doc. VINITI, 3400–83 (1983).

    Google Scholar 

  14. I. Nagata, J. Chem. Eng. Data, 7, 367 (1962).

    Article  CAS  Google Scholar 

  15. A.M. Fulgueras, D. S. Kim and J. Cho, Korean J. Chem. Eng., 33(1), 46 (2016).

    Article  CAS  Google Scholar 

  16. J. Lee, J. Cho, D.M. Kim and S. Park, Korean J. Chem. Eng., 28(2), 591 (2011).

    Article  CAS  Google Scholar 

  17. X. Gao, X. Yin, S. Yang and D. Yang, Korean J. Chem. Eng., 36(1), 77 (2019).

    Article  CAS  Google Scholar 

  18. W. L. Luyben and I. Chien, Design and control of distillation systems for separating azeotropes, Hoboken, New Jersey (2010).

    Book  Google Scholar 

  19. W. L. Luyben, Distillation design and control using aspen simulation, 2nd Ed., Hoboken, New Jersey (2013).

    Book  Google Scholar 

  20. J. Cho and J.-K. Jeon, Korean J. Chem. Eng., 23(1), 1 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the research grant of the Kongju National University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Cho.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanido, R.J., Kim, D.S. & Cho, J. Separation of methanol-chloroform mixture using pressure-swing distillation: Modeling and optimization. Korean J. Chem. Eng. 37, 850–865 (2020). https://doi.org/10.1007/s11814-020-0505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0505-6

Keywords

Navigation