Skip to main content
Log in

PIV experimental study on flow structure and dynamics of square stirred tank using modal decomposition

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Stirred mixing is one of the important unit operations in the chemical, petroleum, pharmaceutical and food industries. The mixing of liquids is achieved by a rotating shear flow field formed by a periodic jet flow from the impeller. In this work, we investigated the flow structure in a square stirred tank without baffles and with a Rushton impeller (RT) using particle image velocimetry (PIV) technique. The instantaneous flow fields were obtained as a function of various rotations per minute (rpm) for the impeller (N=120, 150, 180, 210 and 240 rpm), while phase-resolved velocity information was obtained for N=150 rpm. The proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) methods were applied to analyze the velocity fields, flow structure and dynamic information in the absence of impeller area. As demonstrated by the results, there is a wide range of spatial and temporal scales throughout the process. The high energy parts exist in two kinds of structures except for the average fluid flow. The instability phenomenon results from the cyclic shear flow and the trailing vortices structure caused by the periodic jet near the blade passage frequency. As the Reynolds number is on the rise, the periodic flow increases, the random turbulence is reduced, and the flow tends to the ultimate stable state. The square section acts like baffles to change the direction of the fluid circumferential velocity while increasing the radial and tangential flow, which is conducive to mixing. This study provides a basis for understanding the flow structure and unsteady characteristics in a square stirred mixing tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Sharp and R. J. Adrian, AIChE J., 47(4), 766 (2001).

    Article  CAS  Google Scholar 

  2. R. Escudié, D. Bouyer and A. Liné, AIChE J., 50(1), 75 (2004).

    Article  Google Scholar 

  3. H. Unadkat, C.D. Rielly, G.K. Hargrave and Z. K. Nagy, Chem. Eng. Res. Design, 8(7), 573 (2009).

    Article  Google Scholar 

  4. A. Delafosse, M. L. Collignon, M. Crine and D. Toye, Chem. Eng. Sci., 66(8), 1728 (2011).

    Article  CAS  Google Scholar 

  5. J. L. Lumley, Stochastic tools in turbulence, Dover publications, Publication, New York (2007).

    Google Scholar 

  6. L. Sirovich, Quart. Appl. Math., 45, 561 (1987).

    Article  Google Scholar 

  7. A. Liné, Chem. Eng. Res. Des., 108, 13 (2015).

    Article  Google Scholar 

  8. P. J. Schmid, J. Fluid Mech., 656, 5 (2010).

    Article  CAS  Google Scholar 

  9. P. J. Schmid, Exp. Fluids, 50(4), 1123 (2011).

    Article  Google Scholar 

  10. C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter and D. S. Henningson, J. Fluid Mech., 641, 115 (2009).

    Article  Google Scholar 

  11. S. Roy, J. C. Hua, W. Barnhill, G. H. Gunaratne and J. R. Gord, Phys. Rev. E, 91(1), 013001 (2015).

    Article  Google Scholar 

  12. A. Cesura, C. Carlssona, A. Feymarkb, L. Fuchsa and J. Revstedta, Comput. Fluids, 101, 27 (2014).

    Article  Google Scholar 

  13. P. J. Schmid, D. Violato and F. Scarano, Exp. Fluids, 52(6), 1567 (2012).

    Article  Google Scholar 

  14. Q. Zhang, Y. Liu and S. Wang, J. Fluids Struct., 49, 53 (2014).

    Article  CAS  Google Scholar 

  15. A. D. Lamotte, A. Delafosse, S. Calvo and D. Toye, CES, 178, 348 (2018).

    Article  Google Scholar 

  16. J. Moreau and A. Line, AIChE J., 52(7), 2651 (2006).

    Article  CAS  Google Scholar 

  17. Z. Doulgerakis, M. Yianneskis and A. Ducci, AIChE J., 57(11), 2941 (2011).

    Article  CAS  Google Scholar 

  18. J. C. Gabelle, J. Morchaina, D. Anne-Archard, F. Augier and A. Liné, AIChE J., 59(6), 2251 (2013).

    Article  CAS  Google Scholar 

  19. A. Liné, J. C. Gabelle, J. Morchaina, D. Anne-Archard and F. Augier, Chem. Eng. Res. Design, 91(11), 2073 (2013).

    Article  Google Scholar 

  20. J.-C. Gabelle, J. Morchain and A. Liné, Chem. Eng. Technol., 40(5), 927 (2017).

    Article  CAS  Google Scholar 

  21. C. H. Sohn, M. G. Ju and B. H. L. Gowda, J. Mech. Sci. Technol., 24(4), 951 (2010).

    Article  Google Scholar 

  22. C. Wang, Y. Xu, Y. Wu and Z. An, Can. J. Chem. Eng., 96(11), 788 (2018).

    Article  CAS  Google Scholar 

  23. H. A. Jakobsen, Single phase flow, Springer, Berlin, Heidelberg, 3 (2008).

    Book  Google Scholar 

  24. R. J. Adrian and J. Westerweel, Particle image velocimetry, Cambridge University Press, Publication, Cambridge (2010).

    Google Scholar 

  25. H. Choi, J. Lee and H. Park, Fluids, 31(1), 015102 (2019).

    Article  Google Scholar 

  26. M. Raffel, C. E. Willert, S.T. Wereley and J. Kompenhans, Particle image velocimetry, A practical guide Springer-Verlag, Publication, Berlin (1998).

    Book  Google Scholar 

  27. J. L. Lumley, Stochastic tools in turbulence, Dover Publications, N.Y., USA (2007).

    Google Scholar 

  28. A. Ruhe, Linear Algebra Appl., 58, 391 (1984).

    Article  Google Scholar 

  29. W. Y. C. Chen and J. D. Louck, Linear Algebra Appl., 232, 261 (1996).

    Article  Google Scholar 

  30. H. K. Chung, M. J. H. Simmons and M. Barigou, Ind. Eng. Chem. Res., 48, 1008 (2009).

    Article  CAS  Google Scholar 

  31. J. Zhou, R. J. Adrian and S. Balachandar, J. Fluid Mech., 387, 353 (1999).

    Article  Google Scholar 

  32. M. Eng and A. Rasmuson, Chem. Eng. J., 259, 900 (2015).

    Article  CAS  Google Scholar 

  33. Z. Doulgerakis, M. Yianneskis and A. Ducci, AIChE J., 57(11), 2941 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (11572357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Fan, Y. PIV experimental study on flow structure and dynamics of square stirred tank using modal decomposition. Korean J. Chem. Eng. 37, 755–765 (2020). https://doi.org/10.1007/s11814-020-0504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0504-7

Keywords

Navigation