Skip to main content
Log in

Decomposition of time-resolved tomographic PIV

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured three-dimensional flow fields have then been postprocessed by the dynamic mode decomposition which identifies coherent structures that contribute significantly to the dynamics of the jet. Both temporal and spatial analyses have been performed. Where the jet exhibits a primary axisymmetric instability followed by a pairing of the vortex rings, dominant dynamic modes have been extracted together with their amplitude distribution. These modes represent a basis for the low-dimensional description of the dominant flow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antonia RA (1981) Conditional sampling in turbulence measurements. Ann Rev Fluid Mech 13:131–156

    Article  Google Scholar 

  • Aubry N (1991) On the hidden beauty of the proper orthogonal decomposition. Theor Comp Fluid Dyn 2:339–352

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Edwards WS, Tuckerman LS, Friesner RA, Sorensen DC (1994) Krylov methods for the incompressible Navier–Stokes equations. J Comp Phys 110:82–102

    Article  MathSciNet  MATH  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Greenbaum A (1997) Iterative methods for solving linear systems. SIAM Publishing, Philadelphia

    Book  MATH  Google Scholar 

  • Hain R, Kähler CJ, Michaelis D (2007) Tomographic and time-resolved PIV measurements on a finite cylinder mounted on a flat plate. Exp Fluids 45:715–724

    Article  Google Scholar 

  • Hussain AKMF (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356

    Article  Google Scholar 

  • Jeong J, Hussain AKMF (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Lasota A, Mackey MC (1994) Chaos, fractals and noise: stochastic aspects of dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Lehoucq RB, Scott JA (1997) Implicitly restarted Arnoldi methods and subspace iteration. SIAM J Matrix Anal 23:551–562

    Article  Google Scholar 

  • Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New York

    MATH  Google Scholar 

  • Mack CJ, Schmid PJ (2010) A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows. J Comp Phys 229:541–560

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (1994) Lagrangian PDF methods for turbulent flows. Ann Rev Fluid Mech 26:23–63

    Article  MathSciNet  Google Scholar 

  • Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Ruhe A (1984) Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl 58:279–316

    Article  MathSciNet  Google Scholar 

  • Schmid PJ (2009) Dynamic mode decomposition of experimental data. In: Proceedings of 8th international symposium on particle image velocimetry, PIV09-0141, Melbourne

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid PJ, Sesterhenn JL (2008) Dynamic mode decomposition of numerical and experimental data. In: Bull Am Phys Soc, 61st APS meeting, San Antonio

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45:561–590

    MathSciNet  MATH  Google Scholar 

  • Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM Publishing, Philadelphia

    Book  MATH  Google Scholar 

  • Violato D, Bryon K, Moore P, Scarano F (2009) Application of Powell’s analogy for the prediction of vortex-pairing sound in a low-Mach number jet based on time-resolved planar and tomographic PIV. In: 16th AIAA/CAES conference on aeroacoustics, Stockholm

  • Violato D, Moore P, Scarano F (2009) Aeroacoustic analysis of a rod-airfoil flow by time-resolved TOMO-PIV. In: 8th International symposium on particle image velocimetry, Melbourne

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, P.J., Violato, D. & Scarano, F. Decomposition of time-resolved tomographic PIV. Exp Fluids 52, 1567–1579 (2012). https://doi.org/10.1007/s00348-012-1266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1266-8

Keywords

Navigation