Skip to main content
Log in

Hydrate seeding effect on the metastability of CH4 hydrate

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-H. Ahn, S. Moon, D.-Y. Koh, S. Hong, H. Lee, J. W. Lee and Y. Park, Energy Storage Mater., 24, 655 (2020).

    Article  Google Scholar 

  2. M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum and D. T. Wu, Science, 326, 1095 (2009).

    Article  CAS  Google Scholar 

  3. S. Potdar, J. W. Lee and S. Lee, Korean J. Chem. Eng., 33, 3216 (2016).

    Article  CAS  Google Scholar 

  4. M. Cha, K. Shin and H. Lee, Korean J. Chem. Eng., 34, 2514 (2017).

    Article  CAS  Google Scholar 

  5. J. Min, Y.-H. Ahn, S. Baek, K. Shin, M. Cha and J. W. Lee, J. Phys. Chem. C, 123, 20705 (2019).

    Article  CAS  Google Scholar 

  6. S. Baek, J. Min and J. W. Lee, Rsc Adv., 5, 58813 (2015).

    Article  CAS  Google Scholar 

  7. M. J. Cha, H. Lee and J. W. Lee, J. Phys. Chem. C, 117, 23515 (2013).

    CAS  Google Scholar 

  8. J. S. Zhang, C. Lo, P. Somasundaran and J. W. Lee, J. Colloid Interface Sci., 341, 286 (2010).

    Article  CAS  Google Scholar 

  9. W. Lee, S. Baek, J. D. Kim and J. W. Lee, Energy Fuel, 29, 4245 (2015).

    Article  CAS  Google Scholar 

  10. S. Baek, J. Min, Y. H. Ahn, M. Cha and J. W. Lee, Energy Fuel, 33, 523 (2019).

    Article  CAS  Google Scholar 

  11. A. Ahuja, A. Iqbal, M. Iqbal, J. W. Lee and J. F. Morris, Energy Fuel, 32, 5877 (2018).

    Article  CAS  Google Scholar 

  12. J. S. Zhang, S. Lee and J. W. Lee, Ind. Eng. Chem. Res., 46, 6353 (2007).

    Article  CAS  Google Scholar 

  13. V. Mohebbi, R. M. Behbahani and A. Naderifar, Korean J. Chem. Eng., 34, 706 (2017).

    Article  CAS  Google Scholar 

  14. D. Kashchiev and A. Firoozabadi, J. Cryst. Growth, 243, 476 (2002).

    Article  CAS  Google Scholar 

  15. D. Kashchiev and A. Firoozabadi, J. Cryst. Growth, 250, 499 (2003).

    Article  CAS  Google Scholar 

  16. D. Kashchiev and A. Firoozabadi, J. Cryst. Growth, 241, 220 (2002).

    Article  CAS  Google Scholar 

  17. H. Y. Yang and A. J. Florence, Crystengcomm, 19, 3966 (2017).

    Article  CAS  Google Scholar 

  18. H. Y. Yang, Crystengcomm, 17, 577 (2015).

    Article  CAS  Google Scholar 

  19. L. D. Shiau, J. Cryst. Growth, 450, 50 (2016).

    Article  CAS  Google Scholar 

  20. B. Sowa and N. Maeda, Energy Fuel, 29, 5692 (2015).

    Article  CAS  Google Scholar 

  21. E. F. May, V. W. Lim, P. J. Metaxas, J. W. Du, P. L. Stanwix, D. Rowland, M. L. Johns, G. Haandrikman, D. Crosby and Z. M. Aman, Langmuir, 34, 3186 (2018).

    Article  CAS  Google Scholar 

  22. J. S. Zhang and J. W. Lee, Energy Fuel, 23, 3045 (2009).

    Article  CAS  Google Scholar 

  23. S. Baek, Y. H. Ahn, J. S. Zhang, J. Min, H. Lee and J. W. Lee, Appl. Energy, 202, 32 (2017).

    Article  CAS  Google Scholar 

  24. J. Rodriguezcarvajal, Physica B, 192, 55 (1993).

    Article  CAS  Google Scholar 

  25. J. S. Zhang, C. Lo, A. Couzis, P. Somasundaran, J. Wu and J. W. Lee, J. Phys. Chem. C, 113, 17418 (2009).

    Article  CAS  Google Scholar 

  26. J. H. Song, A. Couzis and J. W. Lee, Langmuir, 26, 9187 (2010).

    Article  CAS  Google Scholar 

  27. E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008).

  28. B. Tohidi, A. Danesh, A. C. Todd, R. W. Burgass and K. K. Ostergaard, Fluid Phase Equilib., 138, 241 (1997).

    Article  CAS  Google Scholar 

  29. D. Y. Kim, J. Park, J. W. Lee, J. A. Ripmeester and H. Lee, J. Am. Chem. Soc., 128, 15360 (2006).

    Article  CAS  Google Scholar 

  30. Z. M. Aman, K. Olcott, K. Pfeiffer, E. D. Sloan, A. K. Sum and C. A. Koh, Langmuir, 29, 2676 (2013).

    Article  CAS  Google Scholar 

  31. H. Lee, J. W. Lee, D. Y. Kim, J. Park, Y. T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester, Nature, 434, 743 (2005).

    Article  CAS  Google Scholar 

  32. D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000).

  33. J. M. Smith, H. C. van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005).

  34. J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Mohler, R. Wagner, M. Niemand, V. Ebert and T. Leisner, Atmos. Chem. and Phys., 13, 4451 (2013).

    Article  Google Scholar 

  35. P. A. Witherspoon and D. N. Saraf, J. Phys. Chem., 69, 3752 (1965).

    Article  CAS  Google Scholar 

  36. K. Lekvam and P. R. Bishnoi, Fluid Phase Equilib., 131, 297 (1997).

    Article  CAS  Google Scholar 

  37. V. Mohebbi, A. Naderifar, R. M. Behbahani and M. Moshfeghian, Petrol. Sci. Technol., 32, 1418 (2014).

    Article  CAS  Google Scholar 

  38. M. J. Hounslow, E. J. W. Wynn, M. Kubo and K. Pitt, Chem. Eng. Sci., 101, 731 (2013).

    Article  CAS  Google Scholar 

  39. D. Vollhardt, Adv. Colloid Interface, 47, 1 (1993).

    Article  CAS  Google Scholar 

  40. D. Vollhardt, M. Ziller and U. Retter, Langmuir, 9, 3208 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Midcareer Researcher Program through NRF grants (NRF-2017R1A2 B4008586) funded by the Ministry of Science, ICT, and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, S., Lee, W., Min, J. et al. Hydrate seeding effect on the metastability of CH4 hydrate. Korean J. Chem. Eng. 37, 341–349 (2020). https://doi.org/10.1007/s11814-019-0451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0451-3

Keywords

Navigation