Skip to main content
Log in

Si3N4 etch rates at various ion-incidence angles in high-density CF4, CHF3, and C2F6 plasmas

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The behavior of Si3N4 etching with ion-incidence angle in high-density CF4, CHF3, and C2F6 plasmas was investigated to understand the effect of discharge chemistry on the etch characteristics of Si3N4. The normalized etch yield (NEY) plots suggest that for all plasmas considered herein, physical sputtering is more prevalent than ion-assisted chemical etching as the Si3N4 etching mechanism. In the cases of the CF4 and C2F6 plasmas, the NEYs at an ion-incidence angle of 60° were greater than unity because the thickness and the fluorine-to-carbon (F/C) ratio of the steady-state fluorocarbon films (st-st FC films) on the Si3N4 surfaces decreased and increased, respectively, as the ion-incidence angle was increased from 0° to 60°. In contrast, the NEY at this angle in the CHF3 plasma was close to unity, as a result of a small change (or a very marginal decrease) in the thickness and the F/C ratio of the st-st FC film. Additionally, the NEY at an ion-incidence angle of 60° was higher in C2F6 plasma compared to CF4 plasma because the changes in the thickness and the F/C ratio of the st-st FC film were greater in the C2F6 plasma than those in the CF4 plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. X. Li, P. J. French and R. F. Wolffenbuttel, J. Vac. Sci. Technol. B, 13, 2008 (1995).

    Article  CAS  Google Scholar 

  2. J. H. Choi, S. J. Kim, H. T. Kim and S. M. Cho, Korean J. Chem. Eng., 35, 1348 (2018).

    Article  CAS  Google Scholar 

  3. B. E. E. Kastenmeier, P. J. Matsuo and G. S. Oehrlein, J. Vac. Sci. Technol. A, 17, 3179 (1999).

    Article  CAS  Google Scholar 

  4. M. Schaepkens, G. S. Oehrlein, C. Hedlund, L. B. Jonsson and H.-O. Blom, J. Vac. Sci. Technol. A, 16, 3281 (1998).

    Article  CAS  Google Scholar 

  5. M. Ito, K. Kamiya, M. Hori and T. Goto, J. Appl. Phys., 91, 3452 (2002).

    Article  CAS  Google Scholar 

  6. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein and J. M. Cook, J. Vac. Sci. Technol. A, 17, 26 (1999).

    Article  CAS  Google Scholar 

  7. A. M. Barklund and H.-O. Blom, J. Vac. Sci. Technol. A, 10, 1212 (1992).

    Article  CAS  Google Scholar 

  8. A. M. Barklund and H.-O. Blom, J. Vac. Sci. Technol. A, 11, 1226 (1993).

    Article  CAS  Google Scholar 

  9. S.-W. Cho, C.-K. Kim, J.-K. Lee, S. H. Moon and H. Chae, J. Vac. Sci. Technol. A, 30, 051301 (2012).

    Article  Google Scholar 

  10. S.-W. Cho, J.-H. Kim, D. W. Kang, K. Lee and C.-K. Kim, ECS J. Solid State Sci. Technol., 3, Q215 (2014).

    Article  CAS  Google Scholar 

  11. S.-W. Cho, J.-H. Kim, J. G. Bak and C.-K. Kim, ECS Solid State Lett., 4, 85 (2015).

    Article  Google Scholar 

  12. J.-H. Kim, S.-W. Cho, C. J. Park, H. Chae and C.-K. Kim, Thin Solid Films, 637, 43 (2017).

    Article  CAS  Google Scholar 

  13. J.-H. Kim, S.-W. Cho and C.-K. Kim, Chem. Eng. Technol., 40, 2251 (2017).

    Article  CAS  Google Scholar 

  14. J.-H. Kim, J.-S. Park and C.-K. Kim, Thin Solid Films, 669, 262 (2019).

    Article  CAS  Google Scholar 

  15. T. E. F. M. Standaert, C. Hudlund, E. A. Joseph and G. S. Oehrlein, J. Vac. Sci. Technol. A, 22, 53 (2004).

    Article  CAS  Google Scholar 

  16. B.-O. Cho, S.-W. Hwang, G.-R. Lee and S. H. Moon, J. Vac. Sci. Technol. A, 18, 2791 (2000).

    Article  CAS  Google Scholar 

  17. D. P. Hamblen and A. Cha-Lin, J. Electrochem. Soc., 135, 1816 (1988).

    Article  CAS  Google Scholar 

  18. N. R. Rueger, J. J. Beulens, M. Schaepkens, M. F. Doemling, J. M. Mizra, T. E. F. Standaert and G. S. Oehrlein, J. Vac. Sci. Technol. A, 15, 1881 (1997).

    Article  CAS  Google Scholar 

  19. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein and J. M. Cook, J. Vac. Sci. Technol. A, 17, 26 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy (Grant No. 20172010104830), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant No. 2018R1A2B6002410), and the GRRC program of Gyeonggi province (GRRC AJOU 2016B03, Photonics-Medical Convergence Technology Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Koo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, CK. Si3N4 etch rates at various ion-incidence angles in high-density CF4, CHF3, and C2F6 plasmas. Korean J. Chem. Eng. 37, 374–379 (2020). https://doi.org/10.1007/s11814-019-0449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0449-x

Keywords

Navigation