Skip to main content

Advertisement

Log in

Energy saving in carbon dioxide hydrate formation process using Boehmite nanoparticles

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work reports on an attempt to save energy in the carbon dioxide hydrate formation process. The kinetics of carbon dioxide hydrate formation induced by synthesized Boehmite (AlOOH) nanoparticles was investigated at 274.15 K, different initial pressures (29, 32 and 35 bar), impeller speed (50, 100 and 200 rpm) and AlOOH concentrations (25, 50 75, 100, 200 ppm). It was also observed that there is a desirable concentration for AlOOH nanoparticles in which the maximum rate of gas consumption and minimum growth and induction time was obtained. According to the results at 29 bar and 100 rpm and in the presence of 50 ppm AlOOH, the gas consumption rate increased to 150%, while the induction time and growth time decreased about 82.8% and 46.1%, respectively. The maximum energy saving of 49.7% for 50 ppm AlOOH was observed, which is very important for industrial applications of carbon dioxide hydrate. The presented technique is useful for intensification of gas hydrate-based CO2 capture processes in the oil and gas industry with minimum energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P0 :

initial pressure [MPa]

Pt :

final pressure [MPa]

V:

volume of gas [m3]

R:

universal gas constant [Jmol−1K−1]

T:

temperature [K]

R(t):

rate of gas consumed [mol s−1]

\({\left({{{\rm{n}}_{C{O_2}}}} \right)_t}\) :

mole number of CO2 in the gas phase measured at t

\({\left({{{\rm{n}}_{C{O_2}}}} \right)_{t + \Delta t}}\) :

mole number of CO2 in the gas phase measured at t+Δt

t:

time [s]

nw0 :

initial mole of water [mol]

Ch :

concentration of carbon dioxide in hydrate phase [mol m−3]

C:

concentration of carbon dioxide [mol m−3]

C0 :

initial concentration of carbon dioxide [mol m−3]

Cs :

concentration of CO2 at the stationary point [mol m−3]

k:

apparent rate constant

Δt:

time difference [s]

References

  1. P. Englezos and J. D. Lee, Korean J. Chem. Eng., 22, 671 (2005).

    Article  CAS  Google Scholar 

  2. D. Kyung, K. Lee, H. Kim and W. Lee, Int. J. GreenH. Gas Con., 20, 285 (2014).

    Article  CAS  Google Scholar 

  3. T. M. Guo, B. H. Wu, Y. H. Zhu, S. S. Fan and G. J. Chen, J. Petrol. Sci. Eng., 41, 11 (2004).

    Article  CAS  Google Scholar 

  4. P. Englezos, Ind. Eng. Chem. Res., 32, 1251 (1993).

    Article  CAS  Google Scholar 

  5. M. K. Chun and H. Lee, Korean J. Chem. Eng., 13, 620 (1996).

    Article  CAS  Google Scholar 

  6. G. J. Moridis and E. D. Sloan, Energy Convers. Manage., 48, 1834 (2007).

    Article  CAS  Google Scholar 

  7. J. W. Lee, P. Dotel, J. Park and J. H. Yoon, Korean J. Chem. Eng., 12, 2507 (2015).

    Article  Google Scholar 

  8. J. W. Lee, K. K. Chun, K. M. Lee, Y. J. Kim and H. Lee, Korean J. Chem. Eng., 19, 673 (2002).

    Article  CAS  Google Scholar 

  9. E. D. Sloan, Ind. Eng. Chem. Res., 39, 3123 (2000).

    Article  CAS  Google Scholar 

  10. S. Almenningen, J. Gauteplass, P. Fotland, G. L. Aastveit, T. Barth and G. Ersland, Int. J. GreenH. Gas Con., 79, 272 (2018).

    Article  CAS  Google Scholar 

  11. T. Mori and Y. H. Mori, Int. J. Refrig., 12, 259 (1989).

    Article  CAS  Google Scholar 

  12. H. Inaba, Int. J. Therm. Sci., 39, 991 (2000).

    Article  CAS  Google Scholar 

  13. E. D. Sloan and F. Fleyfel, Fluid Phase Equilib., 76, 123 (1992).

    Article  CAS  Google Scholar 

  14. F. Pivezhani, H. Roosta and A. Dashti, Energy, 113, 215 (2016).

    Article  CAS  Google Scholar 

  15. A. Kumar, T. Sakpal and P. Linga, Fuel, 105, 664 (2013).

    Article  CAS  Google Scholar 

  16. B. ZareNezhad and V Montazeri, Energy Convers. Manage., 79, 289 (2014).

    Article  CAS  Google Scholar 

  17. X. Wang and M. Dennis, Chem. Eng. Sci., 155, 294 (2016).

    Article  CAS  Google Scholar 

  18. N. N. Nguyen, A. V. Nguyen, K. T. Nguyen, L. Rintoul and L. X. Dang, Fuel, 185, 517 (2016).

    Article  CAS  Google Scholar 

  19. P. Babu, W. I. Chin, R. Kumar and P. Linga, Energy Procedia, 61, 1780 (2014).

    Article  CAS  Google Scholar 

  20. X. S. Li, C. G. Xu, Z. Y. Chen and H. J. Wu, Energy, 36, 1394 (2011).

    Article  CAS  Google Scholar 

  21. X. S. Li, C. G. Xu, Z. Y. Chen and J. Cai, Int. J. Hydrogen Energy, 37, 720 (2012).

    Article  CAS  Google Scholar 

  22. P. J. Herslund, K. Thomsen, J. Abildskov, N. Von Solms, A. Galfré, P. Brântuas and J. M. Herri, Int. J. GreenH. Gas Con., 17, 397 (2013).

    Article  CAS  Google Scholar 

  23. S. D. Zhou, Y. S. Yu, M. M. Zhao, S. L. Wang and G. Z. Zhang, Energy Fuels, 28, 4694 (2014).

    Article  CAS  Google Scholar 

  24. S. Zhou, K. Jiang, Y. Zhao, Y. Chi, S. Wang and G. Zhang, J. Chem. Eng. Data, 63, 389 (2018).

    Article  CAS  Google Scholar 

  25. Y. S. Yu, C. G. Xu and X. S. Li, J. Ind. Eng. Chem., 59, 64 (2018).

    Article  CAS  Google Scholar 

  26. A. Mohammadi, M. Manteghian, A. Haghtalab, A. H. Mohammadi and M. Rahmati-Abkenar, Chem. Eng. J., 237, 387 (2014).

    Article  CAS  Google Scholar 

  27. B. ZareNezhad and V. Montazeri, Petrol. Sci. Technol., 34, 37 (2016).

    Article  CAS  Google Scholar 

  28. J. W. Choi, J. T. Chung and Y. T. Kang, Energy, 78, 869 (2014).

    Article  CAS  Google Scholar 

  29. M. Mohammadi, A. Haghtalab and Z. Fakhroueian, J. Chem. Thermodyn., 96, 24 (2016).

    Article  CAS  Google Scholar 

  30. S. Said, V. Govindaraj, J. M. Herri, Y. Ouabbas, M. Khodja, M. Belloum and R. Nagarajan, J. Nat. Gas Sci. Eng., 32, 95 (2016).

    Article  CAS  Google Scholar 

  31. J. S. Renault-Crispo, S. Coulombe and P. Servio, Energy, 128, 414 (2017).

    Article  CAS  Google Scholar 

  32. V. Vatanpour, S. S. Madaeni, L. Rajabi, S. Zinadini and A. A. Derakhshan, J. Membr. Sci., 401, 132 (2012).

    Article  Google Scholar 

  33. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem., 15, 59 (1976).

    CAS  Google Scholar 

  34. K. M. Sabil, A.R.C. Duarte, J. Zevenbergen, M. M. Ahmad, S. Yusup, A. A. Omar and C. J. Peters, Int. J. GreenH. Gas Con., 4, 798 (2010).

    Article  CAS  Google Scholar 

  35. N. Karami and M. Rahimi, Int. J. Heat Mass Transf., 55, 45 (2014).

    Article  CAS  Google Scholar 

  36. R. L. Kars, R. J. Best and A. A. H. Drinkenburg, Chem. Eng. J., 17, 201 (1979).

    Article  CAS  Google Scholar 

  37. J. H. J. Kluytmans, B. G. M. Van Wachem, B. F. M. Kuster and J. C. Schouten, Chem. Eng. Sci., 58, 4719 (2003).

    Article  CAS  Google Scholar 

  38. J. H. Kim, C. W. Jung and Y. T. Kang, Int. J. Heat Mass Transf., 76, 484 (2014).

    Article  CAS  Google Scholar 

  39. M. Jeong, J. W. Lee, S. J. Lee and Y. T. Kang, Int. J. Heat Mass Transf., 108, 680 (2017).

    Article  CAS  Google Scholar 

  40. S. R. Firoozabadi, M. Bonyadi and A. Lashanizadegan, J. Nat. Gas Sci. Eng., 59, 374 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri, V., Rahimi, M. & Zarenezhad, B. Energy saving in carbon dioxide hydrate formation process using Boehmite nanoparticles. Korean J. Chem. Eng. 36, 1859–1868 (2019). https://doi.org/10.1007/s11814-019-0375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0375-y

Keywords

Navigation