Skip to main content
Log in

NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

NOx, a generic term for the nitrogen oxides generated from combustion in the presence of nitrogen, is a serious threat to human health. This study examined the removal of NOx using ammonia (NH3) and ozone produced using a silent discharge method. The effects of temperature and residence time on NOx removal with NH3 injection in a double reactor system were investigated. An increase in temperature resulted in higher levels of O3 decomposition, whereas the maximum particle formation in the form of ammonium nitrate (NH4NO3) was achieved when both reactors were kept at 180 oC. NH3 and O3 injection in large quantities and NO in smaller amounts with a residence time of 10.2 s resulted in the maximum particulate formation. In contrast, when an excess of NH3 was supplied, it resulted in N2O formation due to the formation of NH2 radicals generated from a reaction of NO2 with NH3. In addition, 100% NO removal was achieved regardless of the residence time. Kinetic simulations indicated the possibility of moisture being the limiting reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xiong, Y. Zeng, W. Cai, S. Zhang, J. Ding and Q. Zhong, J. Ind. Eng. Chem., 65, 380 (2018)

    Article  CAS  Google Scholar 

  2. X. Long, B. Duan, H. Cao, M. Jia and L. Wu, J. Ind. Eng. Chem., 62, 217 (2018)

    Article  CAS  Google Scholar 

  3. H. Wang, X. Li, P. Chen, M. Chen and X. Zheng, Chem. Commun., 49, 9353 (2013)

    Article  CAS  Google Scholar 

  4. S. Roy and A. Baiker, Chem. Rev., 109, 4054 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Fan, W. Ling, B. Huang, L. Dong, C. Yu and H. Xi, J. Ind. Eng. Chem., 56, 108 (2017)

    Article  CAS  Google Scholar 

  6. M. Shelef and R. W. McCabe, Catal. Today, 62, 35 (2000)

    Article  CAS  Google Scholar 

  7. F. Garin, Appl. Catal. A: Gen., 222, 183 (2001)

    Article  CAS  Google Scholar 

  8. S. Tsukamoto and T. Namihira, Pulsed Power Conference, Monterey, CA, 1330 (1999)

    Google Scholar 

  9. J. O. Chae, J. Electrostatics, 57, 251 (2003)

    Article  CAS  Google Scholar 

  10. J. O. Jo and Y. S. Mok, Appl. Chem. Eng., 29, 92 (2018)

    Google Scholar 

  11. H. Fujishima, K. Takekoshi, T. Kuroki, A. Tanaka, K. Otsuka and M. Okubo, Appl. Energ y, 111, 394 (2013)

    Article  CAS  Google Scholar 

  12. T. Kuroki, M. Takahashi, M. Okubo and T. Yamamoto, IEEE Trans. Ind. Appl., 38, 1204 (2002)

    Article  CAS  Google Scholar 

  13. S. Tsukamoto, T. Namihira, D. Wang, S. Katsuki, H. Akiyama and E. Nakashima, Digest of Technical Papers 12th IEEE International Pulsed Power Conference (Cat No99CH36358), 2, 1330 (1999)

    Article  Google Scholar 

  14. H. Lin, X. Gao, Z. Y. Luo, S. P. Guan, K. F. Cen and Z. Huang, J. Environ. Sci. (China), 16, 462 (2004)

    CAS  Google Scholar 

  15. A. Mizuno, R. Shimizu, A. Chakrabarti, L. Dascalescu and S. Furuta, IEEE Trans. Ind. Appl., 31, 957 (1995)

    Article  CAS  Google Scholar 

  16. J. O. Chae, J. Electrostatics, 57, 251 (2003)

    Article  CAS  Google Scholar 

  17. Y. Yamamoto, H. Yamamoto, D. Takada, T. Kuroki, H. Fujishima and M. Okubo, Ozone: Sci. Eng., 38, 211 (2016)

    Article  CAS  Google Scholar 

  18. H. W. Park and S. Uhm, Appl. Chem. Eng., 28, 607 (2017)

    Google Scholar 

  19. J.S. Cha, J. W. Park, B. Jeong, H. D. Kim, S. S. Park and M. C. Shin, Appl. Chem. Eng., 28, 576 (2017)

    Google Scholar 

  20. O. Kazuo, K. Hironobu, I. Kohei and H. Ibaraki, J. Appl. Phys., 95, 3928 (2004)

    Article  CAS  Google Scholar 

  21. B. Guan, H. Lin, Q. Cheng and Z. Huang, Ind. Eng. Chem. Res., 50, 5401 (2011)

    Article  CAS  Google Scholar 

  22. M. S. Cha, Y.-H. Song, J.-O. Lee and S. J. Kim. Int. J. Plasma Environ. Sci. Technol., 1, 28 (2007)

    Google Scholar 

  23. J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys., 30, 2453 (1997)

    Article  CAS  Google Scholar 

  24. K. Nishimura and N. Suzuki, J. Nuclear Sci. Technol., 18, 878 (1981)

    Article  CAS  Google Scholar 

  25. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson and R. G. Hynes, Atmos. Chem. Phys., 4, 1461 (2004)

    Article  CAS  Google Scholar 

  26. D.-J. Kim, Y. Choi and K.-S. Kim, Plasma Chem. Plasma Process., 21, 625 (2001)

    Article  CAS  Google Scholar 

  27. G. Feick and R. M. Hainer, J. Am. Chem. Soc., 76, 5860 (1954)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Strategic Project-Fine particle of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT), the Ministry of Environment (ME), and the Ministry of Health and Welfare (MOHW) (2017M3D8A1092029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kwon Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, Y., Farooq, A., Park, S.H. et al. NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system. Korean J. Chem. Eng. 36, 1291–1297 (2019). https://doi.org/10.1007/s11814-019-0325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0325-8

Keywords

Navigation