Skip to main content
Log in

Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We developed a modified process of a submerged combustion vaporizer (SMV) to remove nitric oxides (NOx) efficiently from flue gas of the SMV at liquefied natural gas (LNG) terminals. For this, excess oxygen is injected into exhaust gas that contains NOx from SMV burner. Then, the mixed gas spreads into a hydrogen peroxide solution or water bath. We initially performed experiments of the modified system to estimate the effect of various process variables (temperature, excess O2 concentration, pH of water, residence time of flue gas in water tank, and H2O2 concentration) on NOx conversion, and developed a mathematical model of the system based on the experiment results. Lastly, we confirmed higher performance of the modified system and validated the feasibility for its field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. NIER, National Air Pollutants Emission 2012, 11-1480523-002293-01, Ministry of Environment, Korea (2012).

    Google Scholar 

  2. Z. Guan, J. Ren, D. Chen, L. Hong, F. Li, D. Wang, Y. Ouyang and Y. Gao, Korean J. Chem. Eng., 33, 3102 (2016).

    Article  CAS  Google Scholar 

  3. S. Egashira, Kobelco Technol. Rev., 32, 64 (2013).

    Google Scholar 

  4. K. Lee, Appl. Chem. Eng., 21, 243 (2010).

    CAS  Google Scholar 

  5. M.E. Morrison, R. G. Rinker and W. H. Corcoran, Ind. Eng. Chem. Fundam., 5, 175 (1966).

    Article  CAS  Google Scholar 

  6. H. Tsukahara, T. Ishida and M. Mayumi., Nitric Oxide, 3, 191 (1999).

    Article  CAS  Google Scholar 

  7. M. Bodenstein and L. Wachenheim, Z. Elektrochem., 24, 183 (1918).

    CAS  Google Scholar 

  8. C.F.H. Tipper and R.K. Williams, Trans. Faraday Soc., 57, 79 (1961).

    Article  CAS  Google Scholar 

  9. J. C. Treacy and F. Daniels, J. Am. Chem. Soc., 77, 2033 (1955).

    Article  CAS  Google Scholar 

  10. J. Mahenc, G. Clot and R. Bes, Bull. Soc. Chim. Fr., 5, 1578 (1971).

    Google Scholar 

  11. I.C. Hisatsune and L. Zafonte, J. Phys. Chem., 73, 2980 (1969).

    Article  CAS  Google Scholar 

  12. J. Olbregts, Int. J. Chem. Kinet., 17, 835 (1985).

    Article  CAS  Google Scholar 

  13. J.H. Smith, J. Am. Chem. Soc., 65, 74 (1943).

    Article  CAS  Google Scholar 

  14. R. Cueto and W. A. Pryor, Vib. Spectrosc., 7, 97 (1994).

    Article  CAS  Google Scholar 

  15. F. B. Brown and R. H. Crist, J. Chem. Phys., 9, 840 (1941).

    Article  CAS  Google Scholar 

  16. J.D. Greig and P.G. Hall, Trans. Faraday. Soc., 63, 655 (1967).

    Article  CAS  Google Scholar 

  17. J.D. Greig and P.G. Hall, Trans. Faraday. Soc., 62, 652 (1966).

    Article  CAS  Google Scholar 

  18. A. Aida, K. Miyamoto, S. Saito, T. Nakano, M. Nishimura, Y. Kawakami, Y. Omori, S. Ando, T. Ichida and Y. Ishibe, Nihon Kyobu Shikkan Gakkai Zasshi, 33, 306 (1995).

    CAS  Google Scholar 

  19. D. H. Stedman and H. Niki, J. Phys. Chem., 77, 2604 (1973).

    Article  CAS  Google Scholar 

  20. J. J. Bufalini and E.R. Stephens, Int. J. Air Wat. Poll., 9, 123 (1965).

    CAS  Google Scholar 

  21. W.A. Glasson and C. S. Tuesday, J. Am. Chem. Soc., 85, 2901 (1963).

    Article  CAS  Google Scholar 

  22. V. L. Pogrebnaya, A. P. Usov, A.V. Baranov, A. I. Nesterenko and P. I. Bez’yazychnyi, Zh. Prikl. Khim., 48, 954 (1975).

    CAS  Google Scholar 

  23. R. S. Lewis and W.M. Deen, Chem. Res. Toxicol., 7, 568 (1994).

    Article  CAS  Google Scholar 

  24. D.A. Wink, J. F. Darbyshire, R.W. Nims, J. E. Saavedra and P.C. Ford, Chem. Res. Toxicol., 6, 23 (1993).

    Article  CAS  Google Scholar 

  25. H.H. Awad and D.M. Stanbury, Int. J. Chem. Kinet., 25, 375 (1993).

    Article  CAS  Google Scholar 

  26. X. L. Long, Z. L. Xin, M. B. Chen, W. Li, W.D. Xiao and W. K. Yuan, Sep. Purif. Technol., 58, 328 (2008).

    Article  CAS  Google Scholar 

  27. D. S. Jin, B.R. Deshwal, Y. S. Park and H. K. Lee, J. Hazard. Mater. B, 135, 412 (2006).

    Article  CAS  Google Scholar 

  28. J.M. Kasper, C. A. Clausen III and C.D. Cooper, J. Air Waste Manage. Assoc., 46, 127 (1996).

    Article  CAS  Google Scholar 

  29. A.D. Bhanarkar, R.K. Gupta, R. B. Biniwale and S.M. Tamhane, Int. J. Environ. Sci. Technol., 11, 1537 (2014).

    Article  CAS  Google Scholar 

  30. D. Thomas and J. Vanderschuren, Ind. Eng. Chem. Res., 36, 3315 (1997).

    Article  CAS  Google Scholar 

  31. D. Thomas and J. Vanderschuren, Sep. Purif. Technol., 18, 37 (1999).

    Article  Google Scholar 

  32. S.E. Schwartz and W. H. White, Adv. Environ. Sci. Eng., 4, 1 (1981).

    CAS  Google Scholar 

  33. S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016).

    Article  CAS  Google Scholar 

  34. J. Kuropka, Environ. Prot. Eng., 37, 13 (2011).

    CAS  Google Scholar 

  35. M. Pires, M. J. Rossi and D. S. Ross, Int. J. Chem. Kinet., 26, 1207 (1994).

    Article  CAS  Google Scholar 

  36. K.K. Baveja, D. S. Rao and M. K. Sarkar, J. Chem. Eng. Jpn., 12, 322 (1979).

    Article  CAS  Google Scholar 

  37. D. Thomas and J. Vanderschuren, Chem. Eng. Sci., 51, 2649 (1996).

    Article  CAS  Google Scholar 

  38. T. Wang and J. Wang, Chem. Eng. Sci., 62, 7107 (2007).

    Article  CAS  Google Scholar 

  39. H. Lee, S. Lee, S. Hwang and D. Jin, Korean Chem. Eng. Res., 54, 340 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geonjoong Kim or Sungwon Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Yang, H., Kim, G. et al. Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application. Korean J. Chem. Eng. 34, 1619–1629 (2017). https://doi.org/10.1007/s11814-017-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0029-x

Keywords

Navigation