Skip to main content
Log in

Density functional theory study of NOx adsorption on alkaline earth metal oxide and transition metal surfaces

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Since the emissions of nitrogen oxides (NOx) from automobiles cause air pollution, NOx storage-reduction (NSR) catalyst has been used to convert the NOx into harmless components such as N2 through the reduction of NOx. In this study, to provide fundamental understanding of key elementary steps of NSR, we established an extensive database for the adsorption properties of NO and NO2 on a wide range of metal and metal oxide surfaces. Our results show that the amount of charge transfer between NOx and surface is closely related to the molecular adsorption strength of NOx, and it changes the molecular stability of NOx on the surfaces by enlarging the inner bond length of N-O. Understanding the adsorption energy of the molecules or atoms that would participate in the reaction can be important to predict the ability of NOx storage and conversion in NSR. This study provides a useful insight for designing metals or metal oxides for NSR catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Klingstedt, K. Arve, K. Eränen and D. Y. Murzin, Acc. Chem. Res., 39, 273 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. S. Gallardo, T. Aida and H. Niiyama, Korean J. Chem. Eng., 15, 480 (1998).

    Article  CAS  Google Scholar 

  3. L. Zhu, Z. Zhong, H. Yang, C. Wang and L. Wang, Korean J. Chem. Eng., 34, 1229 (2017).

    Article  CAS  Google Scholar 

  4. D. N. Belton and K. C. Taylor, Curr. Opin. Solid State Mater. Sci., 4, 97 (1999).

    Article  CAS  Google Scholar 

  5. K. C. Taylor, Cat. Rev., 35, 457 (1993).

    Article  CAS  Google Scholar 

  6. R. M. Heck and R. J. Farrauto, Appl. Catal. A - Gen., 221, 443 (2001).

    Article  CAS  Google Scholar 

  7. J. Wang, H. Chen, Z. Hu, M. Yao and Y. Li, Cat. Rev., 57, 79 (2015).

    Article  CAS  Google Scholar 

  8. P. Granger and V. I. Parvulescu, Chem. Rev., 111, 3155 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. H. Feng, C. Wang and Y. Huang, Korean J. Chem. Eng., 34, 2832 (2017).

    Article  CAS  Google Scholar 

  10. W. S. Epling, L. E. Campbell, A. Yezerets, N. W. Currier and J. E. Parks, Cat. Rev., 46, 163 (2004).

    Article  Google Scholar 

  11. Z. Liu and S. I. Woo, Cat. Rev., 48, 43 (2006).

    Article  CAS  Google Scholar 

  12. S. Roy and A. Baiker, Chem. Rev., 109, 4054 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. H. Cheng, G. Chen, S. Wang, D. Wu, Y. Zhang and H. Li, Korean J. Chem. Eng., 21, 595 (2004).

    Article  CAS  Google Scholar 

  14. N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S.-I. Matsumoto, T. Tanizawa, T. Tanaka, S.-S. Tateishi and K. Kasahara, Catal. Today, 27, 63 (1996).

    Article  CAS  Google Scholar 

  15. S. I. Matsumoto, Catal. Today, 29, 43 (1996).

    Article  CAS  Google Scholar 

  16. W. Bögner, M. Krämer, B. Krutzsch, S. Pischinger, D. Voigtländer, G. Wenninger, F. Wirbeleit, M. S. Brogan, R. J. Brisley and D. E. Webster, Appl. Catal. B-Environ., 7, 153 (1995).

    Article  Google Scholar 

  17. E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson and G. Smedler, J. Catal., 183, 196 (1999).

    Article  CAS  Google Scholar 

  18. N.-X. Lu, J.-C. Tao and X. Xu, Theor. Chem. Acc., 133, 1565 (2014).

    Article  CAS  Google Scholar 

  19. P. Broqvist, H. Grönbeck, E. Fridell and I. Panas, J. Phys. Chem. B, 108, 3523 (2004).

    Article  CAS  Google Scholar 

  20. Y. Song and L. C. Grabow, Ind. Eng. Chem. Res., 57, 12715 (2018).

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller, Phys. Rev. B., 54, 11169 (1996).

    Article  CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996).

    Article  CAS  Google Scholar 

  23. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. R. W. G. Wyckoff, Crystal structures - volume 1, Interscience Publishers, New York (1963).

    Google Scholar 

  25. H. J. Monkhorst and J. D. Pack, Phys. Rev. B., 13, 5188 (1976).

    Article  Google Scholar 

  26. J. Ko, H. Kwon, H. Kang, B.-K. Kim and J. W. Han, Phys. Chem. Chem. Phys., 17, 3123 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. W. F. Schneider, J. Phys. Chem. B, 108, 273 (2004).

    Article  CAS  Google Scholar 

  28. M. Bajdich, J. K. Nørskov and A. Vojvodic, Phys. Rev. B., 91, 155401 (2015).

    Article  CAS  Google Scholar 

  29. R. Añez, A. Sierraalta and L. J. D. Soto, Appl. Surf. Sci., 404, 216 (2017).

    Article  CAS  Google Scholar 

  30. W. F. Schneider, K. C. Hass, M. Miletic and J. L. Gland, J. Phys. Chem. B, 106, 7405 (2002).

    Article  CAS  Google Scholar 

  31. R. Wichtendahl, M. Rodriguez-Rodrigo, U. Härtel, H. Kuhlenbeck and H.-J. Freund, Phys. Status Solidi A, 173, 93 (1999).

    Article  CAS  Google Scholar 

  32. K. Kim and J. W. Han, Phys. Chem. Chem. Phys., 18, 27775 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. H. Abdulhamid, E. Fridell and M. Skoglundh, Appl. Catal. B-Environ., 62, 319 (2006).

    Article  CAS  Google Scholar 

  34. E. Xue, K. Seshan and J. R. H. Ross, Appl. Catal. B-Environ., 11, 65 (1996).

    Article  CAS  Google Scholar 

  35. K. Villani, W. Vermandel, K. Smets, D. Liang, G. Van Tendeloo and J. A. Martens, Environ. Sci. Technol., 40, 2727 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. K. Kim, J. D. Yoo, S. Lee, M. Bae, J. Bae, W. Jung and J. W. Han, ACS Appl. Mater. Interfaces, 9, 15449 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. K. Kim and J. W. Han, Catal. Today, 293–294, 82 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program (NRF2016R1A5A1009592 and NRF-2018R1A2B2002875) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) for Jeong Woo Han. Also, this work was supported by the 2016 Research Fund of the University of S eoul for Eui Yong Kim.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eui Yong Kim or Jeong Woo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.Y., Kim, K., Kim, E.Y. et al. Density functional theory study of NOx adsorption on alkaline earth metal oxide and transition metal surfaces. Korean J. Chem. Eng. 36, 1258–1266 (2019). https://doi.org/10.1007/s11814-019-0324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0324-9

Keywords

Navigation