Skip to main content
Log in

Optimization of inhibitive action of sodium molybdate (VI) for corrosion of carbon steel in saline water using response surface methodology

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of sodium molybdate (Na2MoO4) (VI) as a corrosion inhibitor for medium carbon steel corrosion in saline water containing nitrate and chloride ions was studied at various inhibitor concentrations, temperatures, exposure times and rotational velocities. Mass loss and electrochemical techniques were used to evaluate the corrosion rates. The individual and interactive effects of these four parameters were optimized for minimum response of corrosion rate using central composite design (CCD) with response surface methodology (RSM). Nonlinear regression strategy in light of Gauss-Newton technique was utilized for modeling and optimization of the corrosion inhibition experiments. Second-order polynomial model was suggested to predict the corrosion rates as a function of four variables. The individual effect of temperature on corrosion rate was higher than the individual effects of inhibitor concentration, exposure time and rotational velocity, respectively. The interaction effects of independents variables were also addressed. Open circuit potential measurements were used as a significant way to gain information about the behavior of steel corrosion. Steady state potential was reached after one hour of immersion time. Mass loss results were in a good agreement with potentiodynamic polarization technique. Optimum inhibition efficiency was 95.9% at optimum operating conditions. Polarization plots revealed that the inhibitor acts as the anodic-type inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Oluyemi, O. Oluwole and B. Adewuyi, Mater. Res., 14, 135 (2011).

    Article  CAS  Google Scholar 

  2. A. Oluwaseun and I. Simeon, Inter. Jr. Eng Res. Gen. Sci., 3, 1141 (2015).

    Google Scholar 

  3. S. Ghareba and S. Omanovic, Corros. Sci., 52, 2113 (2010).

    Article  CAS  Google Scholar 

  4. A. Khadom, A. Yaro, A. Kadum, A. AlTaie and A. Musa, Am. J. Appl. Sci., 6, 1409 (2009).

    Google Scholar 

  5. A. Khadom and K. Hameed, Int. J. Chem. Technol., 4, 17 (2012).

    Article  CAS  Google Scholar 

  6. A. Mahmood and A. Khadom, J. Fail. And. Preven., 16, 1071 (2016).

    Article  Google Scholar 

  7. A. Fadhil, A. Khadom, H. Liu, C. Fu, J. Wang, N. Fadhil and H. Mahood, J Mol. Liq., 276, 503 (2019).

    Article  CAS  Google Scholar 

  8. S. Ahmed, W. Ali and A. Khadom, J. Bio-and Tribo-Corrosion, 5, 15 (2019).

    Article  Google Scholar 

  9. J. Trela and M. Scendo, Ochrona Przed Korozia, 55, 224 (2012).

    Google Scholar 

  10. A. Khadom, B. Abod, H. Mahood and A. Kadhum, J. Fail. Anal. Prev., 18, 1300 (2018).

    Article  Google Scholar 

  11. X. Zhao, J. Yang and X. Fan, Appl. Mech. Mater, 44/47, 4066 (2011).

    Google Scholar 

  12. J. Trela, M. Chat and M. Scendo, CHEMIK, 69, 592 (2015).

    CAS  Google Scholar 

  13. T. Joanna, C. Milena and S. Mieczystaw, CHEMIK, 69, 599 (2015).

    Google Scholar 

  14. D. Silva, A. Mirapalheta, C. Martinez-Hurtle and J. Tonholo, Int. J. Eng. Technol, 14, 113 (2014).

    Google Scholar 

  15. G. Bueno, M. Taqueda, H. De Melo and I. C. Guedes, Brazilian J. Chem. Eng., 32, 177 (2015).

    Article  CAS  Google Scholar 

  16. D. Bingol and S. Zor, Corrosion, 69, 462 (2013).

    Article  CAS  Google Scholar 

  17. B. Nikrooz, H. Ebrahimifar and M. Zandrahimi, Indian J. Chem. Technol., 24, 162 (2017).

    CAS  Google Scholar 

  18. D. Granato, V. De Araujo Calado and B. Jarvis, Food Res. International, 55, 149 (2014).

    Article  Google Scholar 

  19. B. Deniz and Z. Sibel, Corrosion, 69, 467 (2013).

    Google Scholar 

  20. A. Khadom and K. Rashid, World]. Eng., 15/3, 388 (2018).

    Article  Google Scholar 

  21. L. Tarantino, Design and Analysis of Industrial Experiments, Tetra Pak (2010).

    Google Scholar 

  22. R. Marcus and E. Mansfeld, Analytical Methods in Corrosion Science and Engineering, 10th Ed., Taylor and Francis Group, New York (2006).

    Google Scholar 

  23. A. Khadom, Korean J. Chem. Eng., 30, 2204 (2013).

    Article  CAS  Google Scholar 

  24. C. Jeff Wu and S. Michael, Experiments: Planning, Analysis and Optimization, 2nd Ed., John Wiley New York, USA (2009).

    Google Scholar 

  25. A.Y. Musa, A.A. Kadhum, A.B. Mohamad, A.R. Daud, M.S. Takriff and S.K. Kamarudin, Corros. Sci., 51, 2393 (2009).

    Article  CAS  Google Scholar 

  26. A. Yaro, H. Al-Jendeel and A. Khadom, Desalination, 270, 193 (2011).

    Article  CAS  Google Scholar 

  27. K. Rashid and A. Khadom, Anti-Corrosion Methods and Materials, 65, 514 (2018).

    Google Scholar 

  28. M. Cedeno, L. Vera and T. Pineda, J. Phys.: Conf. Series, 786 (2017).

    Google Scholar 

  29. L. Zhao, Y. He, X. Deng, G. Yang, W. Li, J. Liang and Q. Tang, Molecules, 17, 3618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. Thirumalaikumarasamy, V. Balasubramanian and S. Sabari, J. Mag nesium Alloys, 5, 133 (2017).

    Article  CAS  Google Scholar 

  31. A. Musa, A. Kadhum, A. Mohamad, A. Daud, M. Takriff and S. Kamarudin, Corros. Sci., 51, 2393 (2009).

    Article  CAS  Google Scholar 

  32. A. Yaro and A. Kahdom, Int. J. Surf. Sci. Eng., 4, 438 (2010).

    Article  Google Scholar 

  33. H. Uhlig and R. Winston, Corrosion and Corrosion Control, 4th Ed., Wiley (2008).

    Google Scholar 

  34. A. Shams El Din, R. Mohammed and H. Haggag, Desalination, 114, 95 (1997).

    Google Scholar 

  35. F. De Souza, Corros. Sci., 51, 642 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Department of Chemical Engineering/University of Technology/Baghdad/Iraq for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Abdullah Khadom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, K.H., Khadom, A.A. Optimization of inhibitive action of sodium molybdate (VI) for corrosion of carbon steel in saline water using response surface methodology. Korean J. Chem. Eng. 36, 1350–1359 (2019). https://doi.org/10.1007/s11814-019-0291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0291-1

Keywords

Navigation