Skip to main content
Log in

Cottonseed biodiesel oxidative stability in mixture with natural antioxidants

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We evaluated the antioxidant power of the natural extracts catechin, curcumin and quercetin on the oxidative stability of methylic cottonseed oil biodiesel by applying the simplex-centroid augmented mixture experimental design, in addition to verifying the existence and the type of synergy among the extracts. The oxidative stability was measured using Rancimat method (EN 14112) for biodiesel added with 1,000, 2,000 and 3,000 ppm of additives, and compared with the commercial synthetic antioxidant butyl hydroxyanisole at the same concentrations. All additives had a positive effect on biodiesel oxidative stability; in addition, catechin and quercetin proved to be more efficient than the synthetic antioxidant, whereas curcumin showed similar results. The results also revealed that the interactions among the extracts varied not only with the proportion in which they were added to the biodiesel, but also with the total concentration, so that the increase in concentration reduced the magnitude of the synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C.G. Albuquerque, Y. L. Machado, A.E.B. Torres, D.C.S. Azevedo, C. L. Cavalcante Jr., L. R. Firmiano and E. J. S. Parente Jr., Renew. Energy, 34, 857 (2009).

    Article  CAS  Google Scholar 

  2. G. Knothe, J. V. Gerpen and J. Krajl, The biodiesel handbook, AOCS Press, Campaign (2010).

    Google Scholar 

  3. E. Christensen and R. L. Mccormick, Fuel Process. Technol., 128, 339 (2014).

    Article  CAS  Google Scholar 

  4. M. G. Simic, J. C hem. Educ., 58, 125 (1981).

    Article  CAS  Google Scholar 

  5. E. N. Frankel, Lipid oxidantion, Woodhead Publishing, Filadélfia (2012).

    Google Scholar 

  6. D. Borsato, D. Galvan, J. L. Pereira, J. R. Orives, K. G. Angilelli and R. L. Coppo, J. Braz. Chem. Soc., 25, 1984 (2014).

    CAS  Google Scholar 

  7. E. C. R. Maia, D. Borsato, I. Moreira, K. R. Spacino, P.R.P. Rodrigues and A. L. Gallina, Fuel Process. Technol., 92, 1750 (2011).

    Article  CAS  Google Scholar 

  8. D.S. Rawat, G. Joshi, B. Y. Lamba, A. K. Tiwari and P. Kumar, Energy, 84, 643 (2015).

    Article  CAS  Google Scholar 

  9. L. S. Sousa, C. V. R. Moura, J. E. Oliveira and E. M. Moura, Fuel, 134, 420 (2014).

    Article  CAS  Google Scholar 

  10. D. F. Pereira, A. P. D. Silva, V. M. Vasconcelos, D. a. G. Aranda and G. F. D. Silva, Rev. Tecnol., 33, 156 (2012).

    Google Scholar 

  11. J. Huang, Y. Wang, Z. Xie, Y. Zhou, Y. Zhang and X. Wan, Eur. J. Clin. Nutr., 68, 1075 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. V. Sueth-Santiago, G. P. Mendes-Silva, D. Decoté-Ricardo and M. E. F. Lima, Quim. Nova, 38, 538 (2015).

    CAS  Google Scholar 

  13. F. Gerin, U. Sener, H. Erman, A. Yilmaz, B. Aydin, F. Armutcu and A. Gurel, Inflammation, 39, 700 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Sfgate, Foods high in catechins, http://healthyeating.sfgate.com/foods-high-catechins-4512.html (accessed 04 april 2017).

  15. G. J. Du, Z. Zhang, X. D. Wen, C. Yu, T. Calway, C. S. Yuan and C. Z. Wang, Nutrients, 4 (2012).

  16. S. Matsubara and D. B. Rodriguez-Amaya, Food Sci. Technol. (Campinas), 26, 401 (2006).

    Article  CAS  Google Scholar 

  17. F.R.M. França, D. S. Menezes, J.J.S. Moreira, G. F. Silva and S. T. Brandão, Potencial da moringa oleifera lam (moringaceae) como fonte de antioxidante natural para biocombustível, Congresso Brasileiro de Engenharia Química, Florianópolis, 1 (2014).

    Google Scholar 

  18. S. K. Borra, P. Gurumurthy, J. Mahendra, K. M. Jayamathi, C. N. Cherian and R. Chand, J. Med. Plant Res., 7, 2680 (2013).

    CAS  Google Scholar 

  19. L. Péret-Almeida, C.D.C. Naghetini, E.D.A. Nunan, R. G. Junqueira and M. B. A. Glória, Ciência e Agrotecnologia, 32, 875 (2008).

    Article  Google Scholar 

  20. Sociedade Brasileira De Química, Química nova interativa - quercetina, http://qnint.sbq.org.br/qni/popup_visualizarMolecula.php?id=6NuC9uLNPgID7hAidXH8Q1lvow3lBbwociTinYJvz60jIaFjMH8EPPds5i7BO5NDxBRUmAGjRhwKEcm4mDXSQQ== (accessed 28 march 2017).

  21. J. Mlcek, T. Jurikova, S. Skrovankova and J. Sochor, Molecules, 21 (2016).

  22. I. R. Lima, M. R. G. Pedrosa and C. B. Pereira, Avaliação do potencial antioxidante de produtos naturais em diferentes biodieseis submetidos ao aquecimento, Simpósio Brasileiro de Educação Química, Terezina (2013).

    Google Scholar 

  23. R. Kowalski, J. Food Qual., 33, 269 (2010).

    Article  CAS  Google Scholar 

  24. D. O. Onukwuli, L. N. Emembolu, C. N. Ude, S. O. Aliozo and M. C. Menkiti, Egypt J. Pet., 26, 103 (2017).

    Article  Google Scholar 

  25. A. Morales-Sillero, A. G. Pérez, L. Casanova and J. M. García, Food Chem., 237, 1216 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. P.K.J.P.D. Wanasundara and F. Shahidi, Antioxidants: Science, technology, and applications, Wiley-Interscience, New Jersey (2005).

    Google Scholar 

  27. F. R. M. França, L. Dos Santos Freitas, A. L. D. Ramos, G. F. Da Silva and S. T. Brandão, Fuel, 203, 627 (2017).

    Article  CAS  Google Scholar 

  28. M. Kobori, Y. Takahashi, Y. Akimoto, M. Sakurai, I. Matsunaga, H. Nishimuro, K. Ippoushi, H. Oike and M. Ohnishi-Kameyama, J. Func t. Foods, 15, 551 (2015).

    Article  CAS  Google Scholar 

  29. I. Van Der Westhuizen and W. W. Focke, Fuel, 219, 126 (2018).

    Article  CAS  Google Scholar 

  30. D. Liu, Y. Li, Y. Qian, Y. Xiao, S. Du and X. Qiu, ACS Sustainable Chem. Eng., 5, 8424 (2017).

    Article  CAS  Google Scholar 

  31. P. Pedrielli and L. H. Skibsted, J. Agric. Food Chem., 50, 7138 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. D. S. Rawat, G. Joshi, J. K. Pandey, B. Y. Lamba and P. Kumar, Fuel, 214, 471 (2018).

    Article  CAS  Google Scholar 

  33. J. Yin, E. M. Becker, M. L. Andersen and L. H. Skibsted, Food Chem., 135, 2195 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Z.-S. Jia, B. Zhou, L. Yang, L.-M. Wu and Z.-L. Liu, J. Chem. Soc., Perkin Trans., 2, 911 (1998).

    Article  Google Scholar 

  35. M.R. Jesus, T.D.C. Soares, P.R.M. Silva, G. A. Romeiro, M. G. Fonseca and L. N. Batista, Sustainable Energy Fuels, 1, 56 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To CAPES for the Master’s scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Almeida Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, J.P.A., França, F.R.M., Silva, M.S. et al. Cottonseed biodiesel oxidative stability in mixture with natural antioxidants. Korean J. Chem. Eng. 36, 1298–1304 (2019). https://doi.org/10.1007/s11814-019-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0287-x

Keywords

Navigation