Skip to main content

Advertisement

Log in

Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Oxidative steam reforming of methanol (OSRM) is autothermal and therefore well suited for hydrogen production. The exothermic part of OSRM generates heat at the reactor inlet to be used as the reaction heat for the endothermic methanol steam reforming in the rest of the reactor. With conventional particle catalysts, a hot spot is formed at the reactor inlet because of the poor thermal conductivity in the catalyst bed. The catalyst at the hot spot is deactivated by thermal sintering. Side reactions such as the reverse water gas shift reaction and methanol decomposition reaction become active at the hot spot. We developed a high-thermal-conductivity Al plate catalyst to suppress the formation of the hot spot in the catalyst bed during OSRM. In particular, a strongly bonded layer of anodic aluminum oxide as a catalyst support was grown on the Al plate surface via anodic oxidation in oxalic acid solution, and the internal surface area of the support was increased by pore widening and hot water treatments. To obtain a catalyst with high activity, multiple impregnations (>three times) and an anodization time of 24 h was needed. The catalyst was deactivated when operated at an elevated temperature of 623 K, but the activity was completely restored by a simple oxidation. Notably, OSRM was proven to be a combination of methanol combustion and methanol steam reforming reactions, and the kinetics of these two reactions were studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Golunski, Energy Environ Sci., 3, 1918 (2010).

    Article  CAS  Google Scholar 

  2. B. J. Bowers, J. L. Zhao, M. Ruffo, R. Khan, D. Dattatraya and N. Dushman, Int. J. Hydrogen Energy, 32, 1437 (2007).

    Article  CAS  Google Scholar 

  3. J. K. Lee and D. Park, Korean J. Chem. Eng., 15, 658 (1998).

    Article  CAS  Google Scholar 

  4. S. J. Kong, J. H. Jun and K. J. Yoon, Korean J. Chem. Eng., 21, 793 (2004).

    Article  CAS  Google Scholar 

  5. J. H. Park, D. Lee, H. C. Lee and E. D. Park, Korean J. Chem. Eng., 27, 1132 (2010).

    Article  CAS  Google Scholar 

  6. P. J. de Wild and M. J. F. M. Verhaak, Catal. Today, 60, 3 (2000).

    Article  Google Scholar 

  7. J. K. Lee, J. B. Ko and D. H. Kim, Appl. Catal. A Gen., 278, 25 (2004).

    Article  CAS  Google Scholar 

  8. A. Iulianelli, P. Ribeirinha, A. Mendes and A. Basile, Renew. Sust. Energy Rev., 29, 355 (2014).

    Article  CAS  Google Scholar 

  9. M. L. Cubeiro and J. L. G. Fierro, J. Catal., 179, 150 (1998).

    Article  CAS  Google Scholar 

  10. Y. C. Lin, K. L. Hohn and S. M. Stagg-Williams, Appl. Catal. A. Gen., 327, 164 (2007).

    Article  CAS  Google Scholar 

  11. J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R. M. Navarro and J. L. G. Fierro, J. Catal., 219, 389 (2003).

    Article  CAS  Google Scholar 

  12. J. R. Lattner and M. P. Harold, Catal. Today, 120, 78 (2007).

    Article  CAS  Google Scholar 

  13. H. Y. Tang, J. Greenwood and P. Erickson, Int. J. Hydrogen Energy, 40, 8034 (2015).

    Article  CAS  Google Scholar 

  14. M. V. Twigg and M. S. Spencer, Top. Catal., 22, 191 (2003).

    Article  CAS  Google Scholar 

  15. G. J. Cheng, A. B. Yu and P. Zulli, Chem. Eng. Sci., 54, 4199 (1999).

    Article  CAS  Google Scholar 

  16. D. Wen and Y. Ding, Chem. Eng. Sci., 61, 3532 (2006).

    Article  CAS  Google Scholar 

  17. D. H. Kim and J. Lee, Stud. Surf. Sci., 159, 685 (2006).

    CAS  Google Scholar 

  18. H. Masuda and K. Fukuda, Science, 268, 1466 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. A. P. Li, F. Muller, A. Birner, K. Nielsh and U. Gosele, J. Vac. Sci. Technol. A, 17, 1428 (1999).

    Article  CAS  Google Scholar 

  20. W. Lee and S.-J. Park, Chem. Rev., 114, 7487 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. M. Mehmood, A. Rauf, M. A. Rasheed, S. Saeed, J. I. Akhter, J. Ahmad and M. Aslam, Mater. Chem. Phys., 104, 306 (2007).

    Article  CAS  Google Scholar 

  22. G. Alcalá, P. Skeldon, G. Thompson, A. Mann, H. Habazaki and K. Shimizu, Nanotechnology, 13, 451 (2002).

    Article  Google Scholar 

  23. J. C. Ganley, K. L. Riechmann, E. G. Seebauer and R. I. Masel, J. Catal., 227, 26 (2004).

    Article  CAS  Google Scholar 

  24. L. Zhou, Y. Guo, M. Yagi, M. Sakurai and H. Kameyama, Int. J. Hydrogen Energy, 34, 844 (2009).

    Article  CAS  Google Scholar 

  25. L. Wang, T. P. Tran, D. V. Vo, M. Sakurai and H. Kameyama, Appl. Catal. A., 350, 150 (2009).

    Article  CAS  Google Scholar 

  26. E. Linga Reddy, J. Karuppiah, H. C. Lee and D. H. Kim, J. Power Sources, 268, 88 (2014).

    Article  CAS  Google Scholar 

  27. E. Linga Reddy, H. C. Lee and D. H. Kim, Int. J. Hydrogen Energy, 40, 2509 (2015).

    Article  CAS  Google Scholar 

  28. T. P. Tran, Y. Guo, J. Chen, L. Zhou, M. Sakurai and H. Kameyama, J. Chem. Eng. Japan, 41, 1042 (2008).

    Article  CAS  Google Scholar 

  29. J. Zhang, J. Kielbasa and D. L. Carroll, Mater. Chem. Phys., 122, 295 (2010).

    Article  CAS  Google Scholar 

  30. Y. Guo, L. Zhou and H. Kameyama, Chem. Eng. J., 168, 341 (2011).

    Article  CAS  Google Scholar 

  31. J. W. Evans, M. S. Wainwright, A. J. Bridgewater and D. J. Young, Appl. Catal., 7, 75 (1983).

    Article  CAS  Google Scholar 

  32. C. Fukuhara, H. Ohkura, Y. Kamata, Y. Murakami and A. Igarashi, Appl. Catal. A Gen., 273, 125 (2004).

    Article  CAS  Google Scholar 

  33. J. H. Kim, Y. S. Jang and D. H. Kim, Chem. Eng. J., 338, 752 (2018).

    Article  CAS  Google Scholar 

  34. A. J. Marchi, J. L. G. Fierro, J. Santamaría and A. Monzón, Appl. Catal. A Gen., 142, 375 (1996).

    Article  CAS  Google Scholar 

  35. T. J. Huang and S. L. Chren, Appl. Catal., 40, 43 (1988).

    Article  CAS  Google Scholar 

  36. S. Velu, K. Suzuki, M. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. A Gen., 213, 47 (2001).

    Article  CAS  Google Scholar 

  37. L. A. Espinosa, R. M. Lago, M. A. Pena and J. L. G. Fierro, Top. Catal., 22, 245 (2003).

    Article  CAS  Google Scholar 

  38. M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino and M. Sisani, Appl. Catal. B Environ., 77, 46 (2007).

    Article  CAS  Google Scholar 

  39. J. Kim, J. Byeon, I. G. Seo, H. C. Lee, D. H. Kim and J. Lee, Korean J. Chem. Eng., 30, 790 (2013).

    Article  CAS  Google Scholar 

  40. T. L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar and H. H. Kung, J. Mol. Catal. A Chem., 162, 275 (2000).

    Article  CAS  Google Scholar 

  41. J. Agrell, M. Boutonnet and J. L. G. Fierro, Appl. Catal. A Gen., 253, 213 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Jang, Y.S., Kim, J.C. et al. Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol. Korean J. Chem. Eng. 36, 368–376 (2019). https://doi.org/10.1007/s11814-018-0211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0211-9

Keywords

Navigation