Skip to main content
Log in

Effect of cohesive powders on pressure fluctuation characteristics of a binary gas-solid fluidized bed

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of cohesive particles on the pressure fluctuations was experimentally investigated in a binary gas-solid fluidized bed. The pressure fluctuation signals were measured by differential pressure sensors under conditions of various weight percentages of cohesive particles. The cohesive particles increased the fixed bed pressure drop per unit height and decreased the minimum fluidization velocity. The Wen & Yu equation well predicts the minimum fluidization velocity of the binary system. The addition of cohesive particles slightly decreased the bubble size in bubbling flow regime when the cohesive particles and the coarse particles mixed well, while the bubble size greatly decreased when the cohesive particles agglomerated on the bed surface. The time series of pressure fluctuations was analyzed by using the methods of time domain, frequency domain and wavelet transformation. The normalized standard deviation of pressure fluctuations decreased with increasing weight percentages of cohesive particles. A wide bandwidth frequency of 0 to 1Hz got narrower with a single peak around 0.6Hz with an increase in proportion of the cohesive particles. The meso-energy and micro-energy of pressure fluctuations were decreasing with increasing cohesive particles proportions, which indicated that adding cohesive particles could reduce the energy dissipation of bubble and particle fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi and A. R. Mohamed, Renew. Sust. Energy Rev., 14, 2852 (2010).

    Article  CAS  Google Scholar 

  2. R. C. Borah, P. Ghosh and P. G. Rao, Int. J. Energy Res., 35, 929 (2011).

    Article  CAS  Google Scholar 

  3. J. Li, T. Nakazato and K. Kato, Chem. Eng. Sci., 59, 2777 (2004).

    Article  CAS  Google Scholar 

  4. Z. Yang, Y. Tung and M. Kwauk, Chem. Eng. Commun., 39, 217 (1985).

    Article  CAS  Google Scholar 

  5. H. O. Konon, C. C. Huang, E. Morimoto, T. Nakayama and T. Hikosaka, Powder Technol., 53, 163 (1987).

    Article  Google Scholar 

  6. T. Nakazato, Y. Suzuki, E. A. Mahmoud and N. Nakagawa, Effect of size and hold-up of cohesive fine powders on particulate fluidization of binary powder-particle mixtures, Asian Pac. Confederation Chem. Eng. Congress Progr. Abstracts (2004), DOI:https://doi.org/10.11491/apcche.2004.0.40.0.

    Google Scholar 

  7. A. Scuzzarella, M. F. Bertos, S. J. Simons, C. D. Hills and P. J. Carey, Powder Technol., 163, 18 (2006).

  8. J. G. Yates and D. Newton, Chem. Eng. Sci., 41, 801 (1986).

    Article  CAS  Google Scholar 

  9. B. Han, Bubble dynamics and bed expansion for single-component and binary gas-solid fluidization systems, The University of Western Ontario (2017).

    Google Scholar 

  10. Z. Zou, H. Z. Li and Q. S. Zhu, Powder Technol., 212, 258 (2011).

    Article  CAS  Google Scholar 

  11. H. Bi, J. Grace and J. Zhu, Powder Technol., 82, 239 (1995).

    Article  CAS  Google Scholar 

  12. H. Bi, Chem. Eng. Sci., 62, 3473 (2007).

    Article  CAS  Google Scholar 

  13. F. Johnsson, R. C. Zijerveld, J. C. Schouten, C. M. van den Bleek and B. Leckner, Int. J. Multiphase Flow, 26, 663 (2000).

    Article  CAS  Google Scholar 

  14. J. Gómez-Hernández, D. Serrano, A. Soria-Verdugo and S. Sánchez-Delgado, Chem. Eng. J., 284, 640 (2016).

    Article  CAS  Google Scholar 

  15. J. van Ommen, S. Sasic, J. Van der Schaaf, S. Gheorghiu, F. Johnsson and M. Coppens, Int. J. Multiphase Flow, 37, 403 (2011).

    Article  CAS  Google Scholar 

  16. G. Tardos and R. Pfeffer, Powder Technol., 85, 29 (1995).

    Article  CAS  Google Scholar 

  17. C. Briens, M. Hamidi, F. Berruti and J. Mcmillan, Powder Technol., 316, 92 (2017).

    Article  CAS  Google Scholar 

  18. J. Xiang, Q. Li, Z. Tan and Y. Zhang, Chem. Eng. Sci., 174, 93 (2017).

    Article  CAS  Google Scholar 

  19. C. E. Davies, A. Carroll and R. Flemmer. Powder Technol., 180, 307 (2008).

    Article  CAS  Google Scholar 

  20. J. Di, The wavelet analysis theory, Science Press, Beijing (2010).

    Google Scholar 

  21. H. E. Hurst, Trans. Am. Soc. Civil Engineers, 116, 776 (1951).

    Google Scholar 

  22. L. P. Wei and Y. J. Lu, Chem. Eng. Res. Design, 109, 657 (2016).

    Article  CAS  Google Scholar 

  23. Y. Lu, J. Huang and P. Zheng, Chem. Eng. J., 274, 123 (2015).

    Article  CAS  Google Scholar 

  24. C. Wen and Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser., 62, 100 (1966).

    Google Scholar 

  25. K. Noda, S. Uchida, T. Makino and H. Kamo, Powder Technol., 46, 149 (1986).

    Article  CAS  Google Scholar 

  26. M. Puncochar and J. Drahos, Chem. Eng. Sci., 60, 1193 (2005).

    Article  CAS  Google Scholar 

  27. Y. O. Chong, D. P. O’Dea, E. T. White, P. L. Lee and L. S. Leung, Powder Technol., 53, 237 (1987).

    Article  CAS  Google Scholar 

  28. S. C. Hong, B. R. Jo, D. S. Doh and C. S. Choi, Powder Technol., 60, 215 (1990).

    Google Scholar 

  29. A. Sheikhi, R. Sotudeh-Gharebagh, N. Mostoufi and R. Zarghami, Powder Technol., 235, 787 (2013).

    Article  CAS  Google Scholar 

  30. G. B. Zhao and Y. R. Yang, AIChE J., 49, 869 (2003).

    Article  CAS  Google Scholar 

  31. A. I. Karamavruç and N. N. Clark, Powder Technol., 90, 235 (1997).

    Article  Google Scholar 

  32. D. Bai, A. S. Issangya and J. R. Grace, Ind. Eng. Chem. Res., 38, 803 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Lu, Y., Zhu, J. et al. Effect of cohesive powders on pressure fluctuation characteristics of a binary gas-solid fluidized bed. Korean J. Chem. Eng. 35, 2117–2126 (2018). https://doi.org/10.1007/s11814-018-0115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0115-8

Keywords

Navigation