Skip to main content
Log in

Characterization of sulfate-reducing bacteria anaerobic granular sludge and granulometric analysis with grey relation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We constructed a bench-scale up-flow anaerobic sludge reactor to systematically investigate the physicochemical characteristics of sulfate-reducing bacteria (SRB) anaerobic granular sludge and evaluate the granular size by a grey relational analysis. Results indicated that the granulation proportion was improved from 17.9% to 68.7% with the sulfate reduction efficiency larger than 90% under gradually shortened hydraulic retention time (HRT) and increased organic loading. Larger SRB granule sludge showed a higher specific gravity and settling velocity. The seed sludge was negatively charged, and the surface charge decreased with the incremental granular diameter. The maximal hydrophobicity and granulation proportion were 69.9% and 42.4%, respectively, for the granular diameter ranging from 1.5 to 2.5 mm. Extracellular polymeric substance (EPS) of the sludge exhibited the highest ratio of protein to polysaccharide (PN/PS) for the granular diameter in the range of 0.5 to 1.5mm. Based on the grey relational analysis of the SRB anaerobic sludge granulation, the correlation degree of the inherent influencing factors was PN/PS>surface charge> hydrophobicity. The theoretical evaluation would be conducive to granulation control during the potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.X. Zhang, Y. B. Zhang, X. Quan, Y.W. Liu, X. L. An, S. Chen and H. M. Zhao, Chem. Eng. J., 174, 159 (2011).

    Article  CAS  Google Scholar 

  2. T. W. Hao, J. H. Luo, W. Li, H. R. Mackey, R. L. Liu, G. R. Morito and G. H. Chen, Water Res., 71, 74 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. P. N. L. Lens, A. Visser, A. J. H. Janssen, L. W. Hulshoff and G. Lettinga, Sci. Technol., 28, 41 (1998).

    CAS  Google Scholar 

  4. E. Blázquez, D. Gabriel, J. A. Baeza and A. Guisasola, Water Res., 105, 395 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Y. W. Liu, Y. B. Zhang and B. J. Ni, Water Res., 75, 292 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. L. Zhu, J. H. Zhou, M. l. Lv, H.T. Yu, H. Zhao and X.Y. Xu, Chemosphere, 121, 26 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Liu and J. H. Tay, Biotechnol. Adv., 22, 533 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Z. Q. Jing, Y. Hu, Q. G. Niu, Y. Y. Liu, Y.-Y. Li and X.-c.C. Wang, Bioresour. Technol., 137, 349 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. H. T. Q. Kieu, E. Müller and H. Horn, Water Res., 45, 3863 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, L. Yu, D. S. Yu, D. Wang, P.Y. Zhang and Z. G. Ji, Biodegradation, 25, 127 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. M. K. Tiwari, S. Guha, C. S. Harendranath and S. Tripathi, Appl. Microbiol. Biotechnol., 71, 145 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. T. Abbasi and S. A. Abbasi, Renew. Sust. Energ. Rev., 16, 1696 (2012).

    Article  CAS  Google Scholar 

  13. L. Appels, J. Baeyens, J. Degrève and R. Dewil, Prog. Energy Combust. Sci., 34, 755 (2008).

    Article  CAS  Google Scholar 

  14. N. Mirzoyan and A. Gross, Water Res., 47, 2843 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. K. S. Singh and T. Viraraghavan, Water Sci. Technol., 48, 211 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. M. Isik and D. T. Sponza, Bioresour. Technol., 96, 633 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. T. H. Erguder, E. Guven and G. N. Demirer, Chemosphere, 50, 165 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. X. S. Jia, H. H. Fang and H. Furumai, Water Sci. Technol., 34, 309 (1996).

    Article  CAS  Google Scholar 

  19. X.Y. Li and S. F. Yang, Water Res., 41, 1022 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. G. P. Sheng, H.Q. Yu and X.Y. Li, Biotechnol. Adv., 28, 882 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. J. Quarmby and C. F. Forster, Water Res., 29, 2449 (1995).

    Article  CAS  Google Scholar 

  22. T. Seviour, Z. Yuan and V. M. C. M. Loosdrecht, Water Res., 46, 4803 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. J.M. Morgan, C.F. Forster and L. Evison, Water Res., 24, 743 (1990).

    Article  CAS  Google Scholar 

  24. J. L. Deng, J. Grey. Syst., 1, 1 (1989).

    Google Scholar 

  25. C. Zhang and H. Zhang, J. Environ. Sci., 25, 710 (2013).

    Article  Google Scholar 

  26. G.M. Zeng, R. Jiang, G. H. Huang, M. Xu and J.B. Li, J. Environ. Manage., 82, 250 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. A. Kadier, P. Abdeshahian, Y. Simayi, M. Ismail, A. A. Hamid and M. S. Kalil, Energy, 90, 1556 (2015).

    Article  CAS  Google Scholar 

  28. J. Xu, G. P. Sheng, H.W. Luo, F. Fang, W.W. Li, R. J. Zeng, Z.H. Tong and H.Q. Yu, Water Res., 45, 674 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. J. E. Schmidt and B.K. Ahring, Biotechnol. Bioeng., 49, 229 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. J. Guo, Y. Kang and Y. Feng, J. Environ. Manage., 203, 278 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. APHA, Standard Methods for the Examination of Water and Wastewater, twenty-first ed. American Public Health Association, Washington, DC (2005).

    Google Scholar 

  32. H. Bai, Y. Kang, H.-e. Quan, Y. Han, J. Sun and Y. Feng, Bioresour. Technol., 128, 818 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  PubMed  Google Scholar 

  34. I. Chang and C. Lee, Desalination, 120, 221 (1998).

    Article  CAS  Google Scholar 

  35. M. Sun, W.W. Li, H.Q. Yu, and H. Harada, Appl. Microbiol. Biotechnol., 96, 1577 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. H. Bai, Y. Kang, H.-e. Quan, Y. Han, J. Sun and Y. Feng, J. Environ. Manage., 129, 350 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. T. Hao, H. Lu, H. K. Chui, V. M.C. M. Loosdrecht and G.H. Chen, Water Sci. Technol., 68, 560 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. J.X. Ye, Y. J. Mu, X. Cheng and D. Z. Sun, Bioresour. Technol., 102, 5498 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. M.A. Willow and R.R.H. Cohen, J. Environ. Qual., 32, 1212 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. H. H. Beeftink and J.V.D. Heuvel, Physical properties of bacterial aggregates in a continuous-flow reactor with biomass retention, G. Letting, A. J. B. Zehnder, J.T.C. Grotenhuis and L.W. Hulshoff-Pol Eds., The Netherlands (1988).

  41. Z. P. Wang, L. L. Liu, J. Yao and W. M. Cai, Chemosphere, 63, 1728 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Kang, Y. Characterization of sulfate-reducing bacteria anaerobic granular sludge and granulometric analysis with grey relation. Korean J. Chem. Eng. 35, 1829–1835 (2018). https://doi.org/10.1007/s11814-018-0092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0092-y

Keywords

Navigation