Skip to main content
Log in

Comparative study of estimation methods of NOx emission with selection of input parameters for a coal-fired boiler

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study focuses on estimation of NOx emission and selection of input parameters for a coal-fired boiler in a 500 MW power generation plant. Careful selection of input parameters is required not only to improve accuracy of the estimation, but also to reduce the model dimensionality. The initial operating input parameters are determined based on operation heuristics and accumulated operation knowledge; the essential input parameters are selected by sensitivity analysis where the performance of the estimation model is assessed as one or some input parameters are successively eliminated from the computation while all other input parameters are retained. From the sequential input selection process, less than ten input parameters survived out of 36 initial input parameters. Auto-regressive moving average (ARMA) model, artificial neural networks (ANN), partial least-squares (PLS) model, and least-squares support vector machine (LSSVM) algorithm were proposed to express the relationship between the operating input parameters and the content of NOx emission. Historical real-time data obtained from a 500 MW power plant coal-fired boiler were used to test the proposed models. It was found that principal components analysis (PCA) enhances the estimation performance of each model. Among the four proposed estimation models, the LSSVM model coupled with PCA scheme showed the minimum root-mean square error (RMSE) and the best R-square value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Choi and C. N. Kim, Fuel, 88, 1720 (2009).

    Article  CAS  Google Scholar 

  2. W. A. Fiveland and C. E. Latham, Combust. Sci. Technol., 93(1), 53 (1993).

    Article  CAS  Google Scholar 

  3. H. Zhou, K. Cen and J. Fan, Energy, 29, 167 (2004).

    Article  CAS  Google Scholar 

  4. H. Zhou, L. Zheng and K. Cen, Energy Convers. Manage., 51, 580 (2010).

    Article  CAS  Google Scholar 

  5. L. G. Zheng, H. Zhou, K. F. Cen and C. L. Wang, Expert. Syst. Appl., 36(2), 2780 (2009).

    Article  Google Scholar 

  6. F. Ahmed, H. J. Cho, J. K. Kim, N. U. Seong and Y. K. Yeo, Korean J. Chem. Eng., 32(6), 1029 (2015).

    Article  CAS  Google Scholar 

  7. Y. Lv, J. Liu, T. Yang and D. Zeng, Energy, 55, 319 (2013).

    Article  CAS  Google Scholar 

  8. Y. R. Ding, Y. J. Cai, P. D. Sun and B. Caen, J. Appl. Res. Technol., 12, 493 (2014).

    Article  Google Scholar 

  9. P. Nomikos and J. F. MacGregor, AIChE J., 40(8), 1361 (1994).

    Article  CAS  Google Scholar 

  10. S. Haykin, Neural networks: A comprehensive foundation (2nd Ed.), Prentice Hall, New Jersey (1999).

    Google Scholar 

  11. J. Smrekar, M. Assadi, M. Fast, I. Kustrin and S. De, Energy, 34, 144 (2009).

    Article  CAS  Google Scholar 

  12. P. Geladi and B. R. Kowalski, Anal. Chim. Acta, 185, 1 (1986).

    Article  CAS  Google Scholar 

  13. M. A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, New York (1986).

    Google Scholar 

  14. G. Baffi, E. B. Martin and A. J. Morris, Comput. Chem. Eng., 23(3), 395 (1999).

    Article  CAS  Google Scholar 

  15. T. Y. Kim, B. S. Kim, T. C. Park and Y. K. Yeo, Korean J. Chem. Eng., 34(7), 1952 (2017).

    Article  CAS  Google Scholar 

  16. J. A. K. Suykens and J. Vandewalle, Neural Process Letters, 9(3), 293 (1999).

    Article  Google Scholar 

  17. T. van Gestel, J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B de Moor and J. Vandewalle, Mach Learning, 54(1), 5 (2004).

    Article  Google Scholar 

  18. R. L. Olsen, R. W. Chappell and J. C. Loftis, Water Res., 46, 3110 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. G. H. Dunteman, Principal components analysis, Sage University Paper Series on Quantitative Applications in the Social Sciences, California (1999).

    Google Scholar 

  20. H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong and S. Lee, Int. J. Hydrogen Energy, 37, 11394 (2012).

    Article  CAS  Google Scholar 

  21. J. Zeng, K. Liu, W. Huang and J. Liang, Korean J. Chem. Eng., 34(8), 2135 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Koo Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.S., Kim, T.Y., Park, T.C. et al. Comparative study of estimation methods of NOx emission with selection of input parameters for a coal-fired boiler. Korean J. Chem. Eng. 35, 1779–1790 (2018). https://doi.org/10.1007/s11814-018-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0087-8

Keywords

Navigation