Skip to main content

Advertisement

Log in

Effect of solid residence time on CO2 selectivity in a semi-continuous chemical looping combustor

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion with inherent CO2 capture and sequestration, which is able to mitigate greenhouse gases (GHGs) emission. In this study, to design a 0.5MWth pressurized chemical looping combustor for natural gas and syngas the effects of solid residences time on CO2 selectivity were investigated in a novel semi-continuous CLC reactor using Ni-based oxygen carrier particle. The semi-continuous chemical looping combustor was designed to simulate the fuel reactor of the continuous chemical looping combustor. It consists of an upper hopper, a screw conveyor, a fluidized bed reactor, and a lower hopper. Solid circulation rate (G s ) was controlled by adjusting the rotational speed of the screw conveyor. The measured solid circulation rate increased linearly as the rotational speed of the screw increased and showed almost the same values regardless of temperature and fluidization velocity up to 800°C and 4 U mf , respectively. The solid circulation rate required to achieve 100% CH4 conversion was varied to change G s -fuel ratio (oxygen carrier feeding rate/fuel feeding rate, kg/Nm3). The measured CO2 selectivity was greater than 98% when the Gs-fuel ratio was higher than 78 kg/Nm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gralla, D. J. Abson, A. P. Moller, D. J. Lang and H. von Wehrden, Renew. Sust. Energy Rev., 70, 1251 (2017).

    Article  Google Scholar 

  2. C. T. Lee, H. Hashim, C. S. Ho, Y.V. Fan and J. J. Klemes, J. Clean. Prod., 146, 1 (2017).

    Article  CAS  Google Scholar 

  3. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and L. F. de Diego, Progress in Energy and Combustion Science, 38, 215 (2012).

    Article  CAS  Google Scholar 

  4. M. C. Tang, L. Xu and M. H. Fan, Appl. Energy, 151, 143 (2015).

    Article  CAS  Google Scholar 

  5. A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar and P. K. Chatterjee, Renew. Sust. Energy Rev., 59, 597 (2016).

    Article  Google Scholar 

  6. T. N. G. Borhani, A. Azarpour, V. Akbari, S. R. W. Alwi and Z. A. Manan, Int. J. Greenh Gas Con., 41, 142 (2015).

    Article  CAS  Google Scholar 

  7. B. Anthony and A. Hoteit, Handbook of Combustion, Wiley-VCH, 5, 517 (2010).

    CAS  Google Scholar 

  8. A. Lyngfelt, Appl. Energy, 113, 1869 (2014).

    Article  CAS  Google Scholar 

  9. M. Ishida and H. G. Jin, Energy, 19, 415 (1994).

    Article  CAS  Google Scholar 

  10. H. Jin, T. Okamoto and M. Ishida, Energy Fuel, 12, 1272 (1998).

    Article  CAS  Google Scholar 

  11. M. Ishida, D. Zheng and T. Akehata, Energy, 12, 147 (1987).

    Article  CAS  Google Scholar 

  12. C. Fu and T. Gundersen, Energy, 44, 60 (2012).

    Article  CAS  Google Scholar 

  13. M. M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63, 4433 (2008).

    Article  CAS  Google Scholar 

  14. J. Adanez, L. F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad and J.M. Palacios, Energy Fuel, 18, 371 (2004).

    Article  CAS  Google Scholar 

  15. A. Abad, T. Mattisson, A. Lyngfelt and M. Johansson, Fuel, 86, 1021 (2007).

    Article  CAS  Google Scholar 

  16. M. Tian, C. Wang, L. Li and X. Wang, AIChE J., 63, 2827 (2017).

    Article  CAS  Google Scholar 

  17. F. Garcia-Labiano, L. F. de Diego, J. Adanez, A. Abad and P. Gayan, Ind. Eng. Chem. Res., 43, 8168 (2004).

    Article  CAS  Google Scholar 

  18. H. J. Ryu, D. H. Bae, K. H. Han, S.Y. Lee, G.T. Jin and J. H. Choi, Korean J. Chem. Eng., 18, 831 (2001).

    Article  CAS  Google Scholar 

  19. K. S. Go, S. R. Son and S. D. Kim, Int. J. Hydrogen Energy, 33, 5986 (2008).

    Article  CAS  Google Scholar 

  20. S. Bhavsar, N. Isenberg, A. More and G. Veser, Appl. Energy, 168, 236 (2016).

    Article  CAS  Google Scholar 

  21. M. Tian, X. Wang, X. Liu, A. Wang and T. Zhang, AIChE J., 62, 792 (2016).

    Article  CAS  Google Scholar 

  22. B. S. Kwak, N.-K. Park, J.-I. Baek, H.-J. Ryu and M. Kang, Korean J. Chem. Eng., 34, 1936 (2017).

    Article  CAS  Google Scholar 

  23. R. Naqvi and O. Bolland, Int. J. Greenh Gas Con., 1, 19 (2007).

    Article  CAS  Google Scholar 

  24. B. Erlach, M. Schmidt and G. Tsatsaronis, Energy, 36, 3804 (2011).

    Article  CAS  Google Scholar 

  25. F. Zerobin, S. Penthor, O. Bertsch and T. Proll, Powder Technol., 316, 569 (2017).

    Article  CAS  Google Scholar 

  26. X. Lu, R. A. Rahman, D. Y. Lu, F. N. Ridha, M. A. Duchesne, Y. Tan and R. W. Hughes, Appl. Energy, 184, 132 (2016).

    Article  CAS  Google Scholar 

  27. H. J. Ryu, D. H. Bae and G. T. Jin, Korean J. Chem. Eng., 20, 960 (2003).

    Article  CAS  Google Scholar 

  28. H. J. Ryu, G. T. Jin, S. H. Jo and M. H. Park, J. Chem. Eng. Jpn., 41, 716 (2008).

    Article  CAS  Google Scholar 

  29. H. Ryu, G. Jin, D. Bae and M. Park, Continuous Long-term Operation of Syngasfueled 50kWth Chemical-Looping Combustor, 16 (2008).

    Google Scholar 

  30. H.-J. Ryu and G.-T. Jin, Energy Eng. J., 12, 289 (2003).

    Google Scholar 

  31. H. Ryu, D. Lee, M. Jang, J. Kim and J.-I. Baek, Transactions of the Korean Hydrogen and New Energy Society, 27, 201 (2016).

    Article  Google Scholar 

  32. J. I. Baek, C. K. Ryu, J. H. Lee, T. H. Eom, J.B. Lee, H. J. Ryu, J. Ryu and J. Yi, Fuel, 102, 106 (2012).

    Article  CAS  Google Scholar 

  33. J. H. Goo, M. W. Seo, D. K. Park, S. D. Kim, S. H. Lee, J. G. Lee and B. H. Song, J. Chem. Eng. Jpn., 41, 686 (2008).

    Article  CAS  Google Scholar 

  34. A. Lyngfelt and B. Leckner, Appl. Energy, 157, 475 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Jung Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Ryu, HJ., Shun, D. et al. Effect of solid residence time on CO2 selectivity in a semi-continuous chemical looping combustor. Korean J. Chem. Eng. 35, 1257–1262 (2018). https://doi.org/10.1007/s11814-018-0042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0042-8

Keywords

Navigation