Liquid-liquid equilibria for water+2,3-butanediol+1-pentanol ternary system at different temperatures of 298.2, 308.2, and 318.2 K

  • A Young Jeong
  • Jeong Ah Cho
  • Yugyeom Kim
  • Hang-Kyu Cho
  • Kyu Yong Choi
  • Jong Sung Lim
Research papers
  • 20 Downloads

Abstract

Liquid-liquid equilibrium (LLE) data was measured for the water+2,3-butanediol+1-pentanol ternary system at 298.2, 308.2, and 318.2 K under atmospheric pressure. Binodal solubility curves and complete ternary phase diagrams were experimentally obtained in mass fraction at these three different temperatures. The consistency of the tieline results was verified by using Othmer-Tobias and Hand plots. Distribution coefficients and separation factors of 2,3- butanediol were evaluated for each tie-line, and the effect of temperature was also investigated. It was found that the distribution coefficients and separation factors of 2,3-butanediol increased with temperature. The experimental LLE data were correlated by the UNIQUAC and NRTL models, and the binary interaction parameters calculated from these models have been reported. Both models successfully predict the experimental tie-line data within average root-meansquare deviations (RMSD) being less than 1.38% and 1.49% from the UNIQUAC and NRTL models, respectively.

Keywords

2,3-Buthanediol 1-Pentanol Liquid-liquid Equilibrium NRTL UNIQUAC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Kamm, P.R. Gruber and M. Kamm, Biorefineries-industrial processes and products, Wiley Online Library (2006).Google Scholar
  2. 2.
    E. Celinska and W. Grajek, Biotechnol. Adv., 27, 715 (2009).CrossRefGoogle Scholar
  3. 3.
    K. J. Wu, G.D. Saratale, Y. C Lo, W. M. Chen, Z. J. Tseng, M.C. Chang, B. C. Tsai, A. Su and J. S. Chang, Bioresour. Technol., 99, 7966 (2008).CrossRefGoogle Scholar
  4. 4.
    S. Garg and A. Jain, Bioresour. Technol., 51, 103 (1995).CrossRefGoogle Scholar
  5. 5.
    M. J. Syu, Microbiol. Biotechnol., 55, 10 (2001).CrossRefGoogle Scholar
  6. 6.
    X. J. Ji, H. Huang and P. K. Ouyang, Biotechnol. Adv., 29, 351 (2011).CrossRefGoogle Scholar
  7. 7.
    J.V. Haveren, E. L. Scott and J. Sanders, Bioprod. Biorefin., 2, 41 (2008).CrossRefGoogle Scholar
  8. 8.
    D. De Faveri, P. Torre, F. Molinari, P. Perego and A. Converti, Enzyme Microb. Technol., 33, 708 (2003).CrossRefGoogle Scholar
  9. 9.
    R. J. Magee and N. Kosaric, Adv. Appl. Microbiol., 32, 89 (1987).CrossRefGoogle Scholar
  10. 10.
    A. P. Zeng, H. Biebl and W.D. Deckwer, Appl. Microbiol. Biotechnol., 33, 264 (1990).CrossRefGoogle Scholar
  11. 11.
    Q. Jiayang, X. Zijun, M. Cuiqing, X. Nengzhong, L. Peihai and X. Ping, Chin. J. Chem. Eng., 14, 132 (2006).CrossRefGoogle Scholar
  12. 12.
    Y. Nakashimada, B. Marwoto, T. Kashiwamura, T. Kakizono and N. Nishio, J. Biosci. Bioeng., 90, 661 (2000).CrossRefGoogle Scholar
  13. 13.
    A. S. Afschar, C. E. Vaz Rossell, R. Jonas, C. A. Quesada and K. Schaller, J. Biotechnol., 27, 317 (1993).CrossRefGoogle Scholar
  14. 14.
    Z.L. Xiu and A.P. Zeng, Appl. Microbiol. Biotechnol., 78, 917 (2008).CrossRefGoogle Scholar
  15. 15.
    N. Qureshi, M.M. Meagher and R.W. Hutkins, Sep. Sci. Technol., 29, 1733 (1994).CrossRefGoogle Scholar
  16. 16.
    B. Jiang, Z.G. Li, J.Y. Dai, D. J. Zhang and Z. L. Xiu, Process Biochem., 44, 112 (2009).CrossRefGoogle Scholar
  17. 17.
    L.H. Sun, B. Jiang and Z. L. Xiu, Biotechnol. Lett., 31, 371 (2008).CrossRefGoogle Scholar
  18. 18.
    S.D. Birajdar, S. Padmanabhan and S. Rajagopalan, J. Chem. Technol. Biotechnol., 90, 1455 (2015).CrossRefGoogle Scholar
  19. 19.
    S.D. Birajdar, S. Rajagopalan, J. S. Sawant and S. Padmanabhan, Process Biochem., 50, 1449 (2015).CrossRefGoogle Scholar
  20. 20.
    M.A. Eiteman and J. L. Gainer, Appl. Microbiol. Biotechnol., 30, 614 (1989).CrossRefGoogle Scholar
  21. 21.
    M. E.T. Alvarez, E.B. Moraes, A.B. Machado and R.M. Filho, Appl. Biochem. Biotechnol., 136, 451 (2007).Google Scholar
  22. 22.
    L.Y. Garcia-Chavez, B. Schurr and A. B. de Haan, Ind. Eng. Chem. Res., 52, 4902 (2013).CrossRefGoogle Scholar
  23. 23.
    J. J. Malinowski, Biotechnol. Technol., 13, 127 (1999).CrossRefGoogle Scholar
  24. 24.
    L.Y. Garcia Chavez, M. Shazad, B. Schuur and A. B. de Haan, J. Chem. Thermodynamics, 55, 85 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Sharma, G. Pandya, T. Chakrabarti and P. Khanna, J. Chem. Eng. Data, 39, 823 (1994).CrossRefGoogle Scholar
  26. 26.
    I. Escudero, J. Chem. Eng. Data, 39, 834 (1994).CrossRefGoogle Scholar
  27. 27.
    Y.Y. Wu, D.T. Pan, J.W. Zhu, K. Chen, B. Wu and L. J. Ji, Fluid Phase Equilib., 325, 100 (2012).CrossRefGoogle Scholar
  28. 28.
    Y.Y. Wu, J.W. Zhu, K. Chen, B. Wu and Y. L. Shen, Fluid Phase Equilib., 266, 42 (2008).CrossRefGoogle Scholar
  29. 29.
    G. Khayati, H. Pahlavanzadeh, E. Vasheghani-Farahani and N. Ghaemi, J. Chem. Thermodynamics, 41, 150 (2009).CrossRefGoogle Scholar
  30. 30.
    Y.Y. Wu, J.W. Zhu, K. Chen, B. Wu, J. Fang and Y. L. Shen, Fluid Phase Equilib., 265, 1 (2008).CrossRefGoogle Scholar
  31. 31.
    S.D. Birajdar, S. Padmanabhan and S. Rajagopalan, J. Chem. Eng. Data, 59, 2456 (2014).CrossRefGoogle Scholar
  32. 32.
    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Joint Committee for Guides in Metrology, 100 (2008).Google Scholar
  33. 33.
    B.N. Taylor and C.E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, National Institute of Standards and Technology, Gaithersburg (1994).CrossRefGoogle Scholar
  34. 34.
    H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).CrossRefGoogle Scholar
  35. 35.
    D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).CrossRefGoogle Scholar
  36. 36.
    A.A. Bondi, Physical properties of molecular crystals, liquids & glasses, Wiley, New York (1968).Google Scholar
  37. 37.
    D. E. Othmer and P. E. Tobias, Ind. Eng. Chem., 34, 690 (1942).CrossRefGoogle Scholar
  38. 38.
    D. B. Hand, J. Phys. Chem., 34, 1961 (1930).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • A Young Jeong
    • 1
  • Jeong Ah Cho
    • 1
  • Yugyeom Kim
    • 1
  • Hang-Kyu Cho
    • 1
  • Kyu Yong Choi
    • 2
  • Jong Sung Lim
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringSogang University, Sinsu-dong, Mapo-guSeoulKorea
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations