Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 859–866 | Cite as

CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char

Catalysis, Reaction Engineering


Gasification is generally considered as the most effective for low rank coal exploitation, and CO2 gasification offers the advantage of upgrading a greenhouse gas. Herein, the effects of alkali and alkaline earth metals on gasification of char derived from Zhundong low rank coal (R-char) were investigated using a thermo-gravimetric analyzer (TGA). Additionally, the characteristics of chars were analyzed by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the carbon conversion increases as the temperature and CO2 concentration increases. The R-char possesses a higher gasification rate and carbon conversion than the acid washing R-char (AR-char). It can be explained that the alkali and alkaline earth metals presence in coal char can remarkably facilitate the compound’s decomposition and make more char surface exposure to react during the gasification process. For the kinetic analysis, the volumetric reaction model reveals a proper description among the three models (VRM, RPM, SCM), and the R-char and AR-char presents a compensation effect in VRM. Besides, the detailed correlation of two chars is ln (k0)=0.10 E A −1.77 (R-char) and ln (k0)=0.10 E A −2.85 (AR-char), respectively.


Alkali and Alkaline Earth Metals CO2 Gasification Compensation Effect Catalytic Zhundong Char 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Wang, C. L. Fang, X. L. Guan, B. Pang and H. T. Ma, Appl. Energy, 136, 738 (2014).CrossRefGoogle Scholar
  2. 2.
    B. T. Zhao, W. W. Tao, M. Zhong, Y. X. Su and G. M. Cui, Renew Sust. Energy Rev., 65, 44 (2016).CrossRefGoogle Scholar
  3. 3.
    J. B. Li, M. M. Zhu, Z. Z. Zhang, K. Zhang, G. Q. Shen and D. K. Zhang, Fuel Process. Technol., 149, 176 (2016).CrossRefGoogle Scholar
  4. 4.
    M. M. Wang, J. S. Zhang, S. Y. Zhang, J. H. Wu and G. X. Yue, Korean J. Chem. Eng., 25(6), 1322 (2008).CrossRefGoogle Scholar
  5. 5.
    T. Joanne and B. Sankar, Chem. Eng. J., 285, 331 (2016).CrossRefGoogle Scholar
  6. 6.
    T. J. Kang, H. J. Park, H. Namkung, L. H. Xu, S. M. Fan and H. T. Kim, Korean J. Chem. Eng., 34(4), 1238 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Q. Dimple, H. W. Wu and C. Z. Li, Fuel, 81, 143 (2002).CrossRefGoogle Scholar
  8. 8.
    H. W. Wu, M. Q. Dimple and C. Z. Li, Fuel, 81, 1033 (2002).CrossRefGoogle Scholar
  9. 9.
    L. Z. Ding, J. Zhou and Q. H. Guo, Fuel, 142, 134 (2015).CrossRefGoogle Scholar
  10. 10.
    P. L. Walker, S. Matsumoto and T. Hanzawa, Fuel, 62, 140 (1983).CrossRefGoogle Scholar
  11. 11.
    Y. H. Bai, S. H. Zhu, K. Luo, M.Q. Gao, L. J. Yan and F. Li, Appl. Therm. Eng., 112, 156 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 943 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 1037 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 1051 (2006).CrossRefGoogle Scholar
  15. 15.
    H. Y. Park and D. H. Ahn, Korean J. Chem. Eng., 24(1), 24 (2007).CrossRefGoogle Scholar
  16. 16.
    R. Silbermann, A. Gomez, I. Gates and N. Mahinpey, Ind Eng Chem Res., 52, 14787 (2013).CrossRefGoogle Scholar
  17. 17.
    J. W. Kook, I. S. Gwak, Y. R. Gwak, M. W. Seo and S. H. Lee, Korean J. Chem. Eng., 34(12), 3092 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Sawettaporn, K. Bunyakiat and B. Kitiyanan, Korean J. Chem. Eng., 26(4), 1009 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Nader and G. Arturo, Chem. Eng. Sci., 148, 14 (2016).CrossRefGoogle Scholar
  20. 20.
    L. Liu and Q. X. Guo, Chem. Rev., 101, 673 (2001).CrossRefGoogle Scholar
  21. 21.
    H. W. Wu, X. J. Li, J. J. Hayashi, T. Chiba and C. Z. Li, Fuel, 84, 1221 (2005).CrossRefGoogle Scholar
  22. 22.
    E. L. K. Mui, W. H. Cheung, V. K. C. Lee and G. McKay, Waste Manage., 30, 821 (2010).CrossRefGoogle Scholar
  23. 23.
    G. C. Bond, Appl. Catal. A: Gen., 191, 23 (2000).CrossRefGoogle Scholar
  24. 24.
    L. Wu, Y. Qiao, B. Gui, C. Wang, J.Y. Xu, H. Yao and M. H. Xu, Energy Fuel, 26, 112 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Liu, Y. Qiao, Z. L. Lu, B. Gui, M. M. Wei, Y. Yu and M. H. Xu, Energy Fuel, 28, 1911 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Qiao, L. Zhang, E. Binner, M. H. Xu and C. Z. Li, Fuel, 89, 3381 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Sathe, Y. Y. Pang and C. Z. Li, Energy Fuel, 13, 748 (1999).CrossRefGoogle Scholar
  28. 28.
    J. Ochoa, M. C. Cassanello, P. R. Bonelli and A. L. Cukierman, Fuel Process. Technol., 74, 161 (2001).CrossRefGoogle Scholar
  29. 29.
    W. Huo, Z. J. Zhou, F. C. Wang, Y. F. Wang and G. S. Yu, Fuel, 131, 59 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Skodras, G. Nenes and N. Zafeiriou, Appl. Therm. Eng., 74, 111 (2015).CrossRefGoogle Scholar
  31. 31.
    G. D. Micco, A. Nasjleti and A. E. Bohe, Fuel, 95, 537 (2012).CrossRefGoogle Scholar
  32. 32.
    A. N. Rollinson and M. K. Karmakar, Chem. Eng. Sci., 128, 82 (2015).CrossRefGoogle Scholar
  33. 33.
    D. M. Quyn, H. Wu, J. I. Hayashi and C. Z. Li, Fuel, 82, 587 (2003).CrossRefGoogle Scholar
  34. 34.
    D. M. Quyn, H. W. Wu, S. P. Bhattacharya and C. Z. Li, Fuel, 81, 151 (2002).CrossRefGoogle Scholar
  35. 35.
    R. J. Lang. Fuel, 65, 1324 (1986).CrossRefGoogle Scholar
  36. 36.
    P. J. van Eyk, P. J. Ashman, Z. T. Alwahabi and G. J. Nathan, Combust. Flame, 158(6), 1181 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87(11), 943 (2006).CrossRefGoogle Scholar
  38. 38.
    A. H. Clemens, L. F. Damiano and T. W. Matheson, Fuel, 77, 1017 (1988).CrossRefGoogle Scholar
  39. 39.
    T. W. Kwon, J. R. Kim, S. D. Kim and W. H. Park, Fuel, 68, 416 (1989).CrossRefGoogle Scholar
  40. 40.
    G. Aranda, A. J. Grootjes, C. M. Meijden, A. Drift, D. F. Gupta, R. R. Sonde, S. Poojari and C. B. Mitra, Fuel Process. Technol., 141, 16 (2016).CrossRefGoogle Scholar
  41. 41.
    C. D. Blasi, Prog. Energy Combust. Sci., 35, 121 (2009).CrossRefGoogle Scholar
  42. 42.
    K. Yip, E. Ng, C. Z. Li, J. I. Hayashi and H. W. Wu, P. Combust. Inst., 33, 1755 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power GenerationNorth China Electric Power UniversityBeijingChina

Personalised recommendations