Skip to main content

Advertisement

Log in

Comparison of catalytic pyrolysis and gasification of Indonesian low rank coals using lab-scale bubble fluidized-bed reactor

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various methods are used in the coal gasification technology for increasing the efficiency of low rank coal to the level of high rank coal through catalytic gasification. The catalyst used in the catalytic gasification process lowers the activation energy required in the coal gasification reaction. Our purpose was to determine the characteristics of the reaction conditions for producing syngas and the characteristics for comparison catalytic pyrolysis and gasification performance. Among various coals, we used Indonesian low rank coals (Indonesian lignite, MSJ, and Roto South) characterized by a large deposit volume and low cost. Catalytic pyrolysis and gasification experiments were run under the same experimental conditions (reactor type, reaction temperature, catalyst content, and catalyst input method), and the characteristics were compared. Taking the conversion and heating values into consideration, the optimal conditions for catalytic gasification in this study were an H2O/C mole ratio of 10, temperature of 800 °C, and 10 wt% catalyst impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Energy Agency, Energy Technology Perspectives (2014).

  2. World Energy Resources: Coal World Energy Council (2013).

  3. T. Takarada, Y. Tamai and A. Tomita, Fuel, 64, 1438 (1985).

    Article  CAS  Google Scholar 

  4. F. Huhn, J. Klein and H. Jüntgen, Fuel, 62(2), 196 (1983).

    Article  CAS  Google Scholar 

  5. N. C. Nahas, Fuel, 62, 239 (1983).

    Article  CAS  Google Scholar 

  6. T. Wigmans, R. Elfring and J. A. Moulijn, Carbon, 21(1), 1 (1983).

    Article  CAS  Google Scholar 

  7. D. W. M. Kee, C. L. Spiro, P. G. Kosky and E. J. Lamby, Fuel, 62(2), 217 (1983).

    Article  Google Scholar 

  8. K. J. Huttinger and R. Minges, Fuel, 64(4), 486 (1985).

    Article  Google Scholar 

  9. R. J. Lang, Fuel, 65(10), 1324 (1986).

    Article  CAS  Google Scholar 

  10. T. Takarada, S. Ichinose and K. Kato, Fuel, 71(8), 883 (1992).

    Article  CAS  Google Scholar 

  11. H. Kubiak, H. J. Schroter, A. Sulimma and K. H. van Heek, Fuel, 62(2), 242 (1983).

    Article  CAS  Google Scholar 

  12. L. Kuhn and H. Plogmann, Fuel, 62(2), 205 (1983).

    Article  Google Scholar 

  13. H. Juntgen, Fuel, 62, 234 (1983).

    Article  Google Scholar 

  14. K. Hashimoto, K. Miura and T. Ueda, Fuel, 65(11), 1516 (1986).

    Article  CAS  Google Scholar 

  15. S. J. Yuh and E. E. Wolf, Fuel, 62(6), 738 (1983).

    Article  CAS  Google Scholar 

  16. G. Bruno, M. Buroni, L. Carvani, G. Del Piero and G. Passoni, Fuel, 67(1), 67 (1988).

    Article  CAS  Google Scholar 

  17. A. Tomita, Y. Watanabe, T. Takarada, Y. Ohtsuka and Y. Tamai, Fuel, 64(6), 795 (1985).

    Article  CAS  Google Scholar 

  18. P. K. Bakkerud, Catal. Today, 106(1), 30 (2005).

    Article  CAS  Google Scholar 

  19. I. Handayani, A. Triantoro and D. Diniysti, J. Novel Carbon Res. Sci., 7, 68 (2013).

    Google Scholar 

  20. E. J. Hippo and D. Tandon, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996).

    CAS  Google Scholar 

  21. H. Zhang, Dissertation at the Brigham Young University (2001).

    Google Scholar 

  22. S. Park, Y. Choi and J. Shon, Appl. Chem. Eng., 22(3), 312 (2011).

    CAS  Google Scholar 

  23. Y. T. Kim, D. K. Seo and J. H. Hwang, Korean Chem. Eng. Res., 49(3), 372 (2011).

    Article  CAS  Google Scholar 

  24. D. W. M. Kee, Carbon, 20(1), 59 (1982).

    Article  Google Scholar 

  25. D. A. Sams, T. Talverdian and F. Shadman, Fuel, 64(9), 1208 (1985).

    Article  CAS  Google Scholar 

  26. J. Wang, K. Sakanishi and I. Saito, Energy Fuels, 19, 2114 (2005).

    Article  CAS  Google Scholar 

  27. L. Dong, C. Xu, T. Suda and T. Murakami, Fuel Processing Technol., 91(8), 882 (2010).

    Article  CAS  Google Scholar 

  28. Fabrizio Scala, Woodhead publishing (2013).

  29. W. J. Lee and S. D. Kim, Fuel, 74(9), 1387 (1995).

    Article  Google Scholar 

  30. J. Wang, M. Jiang, Y. Yao, Y. Zhang and J. Cao, Fuel, 88(9), 1572 (2009).

    Article  CAS  Google Scholar 

  31. O. C. Kural (Ed.), Istanbul Technical University, Istanbul (1994).

    Google Scholar 

  32. D. Tristantini, D. Supramono and R. K. Suwignjo, Int. J. Technol., 6, 22 (2015).

    Article  Google Scholar 

  33. A. Kumar, D. D. Jones and M. A. Hanna, Energies, 2(3), 556 (2009).

    Article  CAS  Google Scholar 

  34. W. J. Lee, S. D. Kim and B. H. Song, Korean J. Chem. Eng., 18(5), 640 (2001).

    Article  CAS  Google Scholar 

  35. J. M. Lee, Y. J. Kim and S. D. Kim, Appl. Therm. Eng., 18(11), 1013 (1998).

    Article  CAS  Google Scholar 

  36. L. Chen, R. Nolan and S. Avadhany, MIT (2009).

    Google Scholar 

  37. S. Li, X. Ji, X. Zhang, L. Gao and H. Jin, Appl. Energy, 136(31), 98 (2014).

    CAS  Google Scholar 

  38. Y. Wu, J. Wang, S. Wu, S. Huang and J. Gao, Fuel Proc. Technol., 92(3), 523 (2011).

    Article  CAS  Google Scholar 

  39. I. Ahmed and A. K. Gupta, Appl. Energy, 86, 1813 (2009).

    Article  CAS  Google Scholar 

  40. S. Luo, Y. Zhou and C. Yi, Energy, 44(1), 391 (2012).

    Article  CAS  Google Scholar 

  41. L. Garcia, M. L. Salvador, J. Arauzo and R. Bilbao, Energy Fuels, 13, 851 (1999).

    Article  CAS  Google Scholar 

  42. J. G. Lee, J. H. Kim, T. J. Park and S. D. Kim, Fuel, 75(9), 1035 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Taek Kim.

Additional information

This paper is reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, TJ., Park, H., Namkung, H. et al. Comparison of catalytic pyrolysis and gasification of Indonesian low rank coals using lab-scale bubble fluidized-bed reactor. Korean J. Chem. Eng. 34, 1238–1249 (2017). https://doi.org/10.1007/s11814-016-0366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0366-1

Keywords

Navigation