Skip to main content

Advertisement

Log in

Co-pyrolytic behaviors of biomass and polystyrene: Kinetics, thermodynamics and evolved gas analysis

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The pyrolytic degradation mechanism of chestnut shell (CNS) and its blend with waste polystyrene (PS) were investigated. Individual pyrolysis behavior of samples obtained separately was compared with those of the blends using a combined TGA/MS/FT-IR system. To elaborate kinetic analysis and to determine kinetic parameters, distributed activation energy model (DAEM) was used. The average activation energy of co-pyrolytic decomposition reaction was 191.6 kJ/mol, while the activation energy of the pyrolysis of CNS and PS was 175.2 and 208.9 kJ/mol, respectively. Friedman and Flynn-Wall-Ozawa iso-conversional methods were applied and the results were found to be consistent with the models. To express the presence of complex reaction mechanisms and the interactions of the radicals, thermodynamic parameters were also calculated. Finally, the pathways for main volatiles were established, and their relationship with the pyrolytic degradation was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ragaert, L. Delva and K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manage., Article in Press (2017).

    Google Scholar 

  2. Plastics Europe, EuPC, EPRO (2015) Plastics- The Facts 2015: An Analysis of European Plastics Production, Demand and Recovery for 2015.

  3. European Commission Energy Strategy and Energy Union Website, http://ec.europa.eu/energy/en/topics/energy-strategy-and-energyunion/ 2020-energy-strategy.

  4. A. Mukherjee, P. Das and K. Minu, Biomass Conversion and Biorefinery, 4(3), 259 (2014).

    Article  CAS  Google Scholar 

  5. I. Bekri-Abbes, S. Bayoudh and M. Baklouti, J. Polym. Environ., 14(3), 249 (2006).

    Article  CAS  Google Scholar 

  6. R. Sinha, S. Kumar and R. Singh, Biomass Conversion and Biorefinery, 3(4), 327 (2013).

    Article  CAS  Google Scholar 

  7. M. R. Othman, Y.-H. Park, T. A. Ngo, S.-S. Kim, J. Kim and K. S. Lee, Korean J. Chem. Eng., 27(1), 163 (2010).

    Article  CAS  Google Scholar 

  8. E. Butler, G. Devlin and K. McDonnell, Waste and Biomass Valorization, 2(3), 227 (2011).

    Article  CAS  Google Scholar 

  9. T. R. Kosanic, M. B. Ceranic, S. N. Ðuric, V. R. Grkovic, M. M. Milotic and S. D. Brankov, J. Therm. Sci., 23(3), 290 (2014).

    Article  CAS  Google Scholar 

  10. S. Polesek-Karczewska and D. Kardas, J. Therm. Sci., 24(1), 82 (2015).

    Article  CAS  Google Scholar 

  11. R. Soysa, Y. S. Choi, S. K. Choi, S. J. Kim and S. Y. Han, Korean J. Chem. Eng., 33(2), 603 (2016).

    Article  CAS  Google Scholar 

  12. A. Pollex, A. Ortwein and M. Kaltschmitt, Biomass Conversion and Biorefinery, 2(1), 21 (2012).

    Article  CAS  Google Scholar 

  13. A. Nzihou, B. Stanmore and P. Sharrock, Energy, 58, 305 (2013).

    Article  CAS  Google Scholar 

  14. S. Junpirom, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 27(3), 791 (2010).

    Article  CAS  Google Scholar 

  15. B. S. Santos and S. C. Capareda, Biomass Conversion and Biorefinery, 6(3), 325 (2016).

    Article  CAS  Google Scholar 

  16. I. Y. Mohammed, C. H. Lim, F. K. Kazi, S. Yusup, H. L. Lam and Y. A. Abakr, Waste and Biomass Valorization, 8(3), 911 (2016).

    Article  Google Scholar 

  17. L. Chen, S. Wang, H. Meng, Z. Wu and J. Zhao, Appl. Therm. Eng., 111, 834 (2017).

    Article  CAS  Google Scholar 

  18. M. Brebu, S. Ucar, C. Vasile and J. Yanik, Fuel, 89(8), 1911 (2010).

    Article  CAS  Google Scholar 

  19. S. Al-Salem and P. Lettieri, Chem. Eng. Res. Design, 88(12), 1599 (2010).

    Article  CAS  Google Scholar 

  20. H. W. Lee, S. J. Choi, S. H. Park, J.-K. Jeon, S.-C. Jung, S. C. Kim and Y.-K. Park, Nanoscale Res. Lett., 9(1), 376 (2014).

    Article  Google Scholar 

  21. S. A. Sakaki, B. Roozbehani, M. Shishesaz and N. Abdollahkhani, Clean Technologies and Environ. Policy, 16(5), 901 (2014).

    Article  CAS  Google Scholar 

  22. J. Shah, J. Polym. Environ., 1 (2014).

  23. I. Barbarias, G. Lopez, J. Alvarez, M. Artetxe, A. Arregi, J. Bilbao and M. Olazar, Chem. Eng. J., 296, 191 (2016).

    Article  CAS  Google Scholar 

  24. B. Han, Y. Chen, Y. Wu, D. Hua, Z. Chen, W. Feng, M. Yang and Q. Xie, J. Therm. Anal. Calorimetry, 115(1), 227 (2014).

    Article  CAS  Google Scholar 

  25. J. Chattopadhyay, T. Pathak, R. Srivastava and A. Singh, Energy, 103, 513 (2016).

    Article  CAS  Google Scholar 

  26. S. Xiong, J. Zhuo, H. Zhou, R. Pang and Q. Yao, J. Analytical Appl. Pyrol., 112, 66 (2015).

    Article  CAS  Google Scholar 

  27. Y.-M. Kim, T.U. Han, B. Hwang, B. Lee, H.W. Lee, Y.-K. Park and S. Kim, Korean J. Chem. Eng., 33(8), 2350 (2016).

    Article  CAS  Google Scholar 

  28. J. Alvarez, S. Kumagai, C. Wu, T. Yoshioka, J. Bilbao, M. Olazar and P.T. Williams, Int. J. Hydrogen Energy, 39(21), 10883 (2014).

    Article  CAS  Google Scholar 

  29. A.K. Varma and P. Mondal, J. Therm. Anal. Calorimetry, 124(1), 487 (2016).

    Article  CAS  Google Scholar 

  30. S.A. El-Sayed and M.E. Mostafa, Waste and Biomass Valorization, 6(3), 401 (2015).

    Article  CAS  Google Scholar 

  31. J. Wang and H. Zhao, Waste and Biomass Valorization, 6(4), 527 (2015).

    Article  CAS  Google Scholar 

  32. R.R. Pradhan, P.P. Garnaik, B. Regmi, B. Dash and A. Dutta, Biomass Conversion and Biorefinery, 7, 237 (2017).

    Article  CAS  Google Scholar 

  33. A. Malika, N. Jacques, B. Fatima and A. Mohammed, Biomass Conversion and Biorefinery, 6(2), 161 (2016).

    Article  CAS  Google Scholar 

  34. Y. Ma, J. Wang and Y. Zhang, Biomass Conversion and Biorefinery, 1 (2017).

  35. Food and Agriculture Organization of the United Nations Website http://www.fao.org/home/en/.

  36. J. E. White, W. J. Catallo and B.L. Legendre, J. Analytical Appl. Pyrol., 91(1), 1 (2011).

    Article  CAS  Google Scholar 

  37. K. Miura and T. Maki, Energy Fuels, 12(5), 864 (1998).

    Article  CAS  Google Scholar 

  38. H. L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of Polymer Science: Polymer Symposia, 1964. vol 1. Wiley Online Library, pp. 183–195.

    Google Scholar 

  39. T. Ozawa, Bulletin Chem. Soc. Japan, 38(11), 1881 (1965).

    Article  CAS  Google Scholar 

  40. J. H. Flynn and L.A. Wall, J. Res. Nat. Bur. Stand., 70(6), 487 (1966).

    Article  CAS  Google Scholar 

  41. H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 86(12), 1781 (2007).

    Article  CAS  Google Scholar 

  42. Ö. Çepeliogullar and A. E. Pütün, J. Analytical Appl. Pyrol., 110, 363 (2014).

    Article  Google Scholar 

  43. F. Abnisa and W. M. A.W. Daud, Energy Convers. Manage., 87, 71 (2014).

    Article  CAS  Google Scholar 

  44. R. Westerhout, J. Waanders, J. Kuipers and W. Van Swaaij,Ind. Eng. Chem. Res., 36(6), 1955 (1997).

    Article  CAS  Google Scholar 

  45. K. Murata, Y. Hirano, Y. Sakata and M. A. Uddin, J. Analytical Appl. Pyrol., 65(1), 71 (2002).

    Article  CAS  Google Scholar 

  46. R. Aguado, B. Gaisán, R. Prieto and J. Bilbao, Chem. Eng. J., 92(1), 91 (2003).

    Article  CAS  Google Scholar 

  47. W.-R. Zeng, Y.-J. Zhou, R. Huo, B. Yao and Y.-Z. Li, Gaofenzi Cailiao Kexue yu Gongcheng/Polymer Materials Science Engineering, 22(5), 162 (2006).

    CAS  Google Scholar 

  48. A. Meng, S. Chen, Y. Long, H. Zhou, Y. Zhang and Q. Li, Waste Manage., 46, 247 (2015).

    Article  CAS  Google Scholar 

  49. J. Cheng, Y. Pan, J. Yao, X. Wang, F. Pan and J. Jiang, Journal of Loss Prevention in the Process Industries, 40, 139 (2016).

    Article  CAS  Google Scholar 

  50. G. Özsin and A. E. Pütün, Waste Manage., 64, 315 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamzenur Özsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsin, G., Pütün, A.E. Co-pyrolytic behaviors of biomass and polystyrene: Kinetics, thermodynamics and evolved gas analysis. Korean J. Chem. Eng. 35, 428–437 (2018). https://doi.org/10.1007/s11814-017-0308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0308-6

Keywords

Navigation