Skip to main content
Log in

Multilateral approaches for investigation of particle stickiness of coal ash at low temperature fouling conditions

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Particle stickiness is a key parameter for increasing ash deposition in gasification process. We conducted multilateral investigations to evaluate particle stickiness of coal ash at low temperature fouling conditions through Watt and Fereday’s viscosity model, dilatometry (DIL) and laser flash apparatus (LFA) technique. Seventeen coals were employed for ash deposition experiments under gasification condition through drop tube furnace (DTF). The low viscosity not only led to increasing ash deposition behavior, but also increasing the particle size of deposited ash. From DIL analysis, the ash sintering behavior increased with increasing temperature due to increase of particle stickiness. The high amount of Fe2O3, CaO and MgO components resulted in low sintering temperature and high reduction of physical length. Through LFA analysis, the thermal conductivity increased with increasing temperature, because of increasing particle stickiness. In addition, its value was correlated with the propensity of common fouling indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Li, X.W. Ma, Q.Q. Guo, H. L. Fan, M. L. Xu, Q. H. Liu and Y. T. Fang, Fuel Process. Technol., 152, 124 (2016).

    Article  CAS  Google Scholar 

  2. X. Wu, X. Zhang, B. Dai, X. Xu, J. Zhang and L. Zhang, Fuel Process. Technol., 152, 176 (2016).

    Article  CAS  Google Scholar 

  3. B.Q. Dai, X. Wu, A.D. Girolamo and L. Zhang, Fuel, 139, 720 (2015).

    Article  CAS  Google Scholar 

  4. P.M. Walsh, Energy Fuels, 6, 709 (1992).

    Article  CAS  Google Scholar 

  5. L. H. Xu, H. Namkung, H. B. Kwon and H.T. Kim, J. Ind. Eng. Chem., 15, 98 (2009).

    Article  CAS  Google Scholar 

  6. J.G. Singer, Combustion fossil power systems, in: Combustion Engineering inc, 3rd Ed., Rand McNally, New York (1981).

    Google Scholar 

  7. S. Su, J. H. Pohl and D. Holcombe, Fuel, 82, 1653 (2003).

    Article  CAS  Google Scholar 

  8. S. Vargas, F. J. Frandsen and K. Dam-Johansen, Prog. Energy Combust. Sci., 27, 237 (2001).

    Article  CAS  Google Scholar 

  9. S. Lin, L. Ding, Z. Zhou and G. Yu, Fuel, 186, 656 (2016).

    Article  CAS  Google Scholar 

  10. J. Ni, Z. Zhou, G. Yu, Q. Liang and F. Wang, Ind. Eng. Chem. Res., 49, 12302 (2010).

    Article  CAS  Google Scholar 

  11. H. Namkung, X. Hu, H.T. Kim, F. Wang and G. Yu, Fuel Process. Technol., 149, 195 (2016).

    Article  CAS  Google Scholar 

  12. J.M. Grillot and G. Icart, Exp. Therm. Fluid Sci., 14, 442 (1997).

    Article  CAS  Google Scholar 

  13. H. Müller-Steinhagen, F. Reif, N. Epstein and A. P. Watkinson, Can. J. Chem. Eng., 66, 42 (1988).

    Article  Google Scholar 

  14. J. Barroso, J. Ballester, L. M. Ferrer and S. Jiménez, Fuel Process. Technol., 87, 737 (2006).

    Article  CAS  Google Scholar 

  15. Z. Ma, F. Iman, P. Lu, R. Sears, L. Kong, A. S. Rokanuzzaman, D. P. McCollor and S.A. Benson, Fuel Process. Technol., 88, 1035 (2007).

    Article  CAS  Google Scholar 

  16. K. Strandström, C. Mueller and M. Hupa, Fuel Process. Technol., 88, 1053 (2007).

    Article  Google Scholar 

  17. S. Li, Y. Wu and K. J. Whitty, Energy Fuels, 24, 1868 (2010).

    Article  CAS  Google Scholar 

  18. S. Li and K. J. Whitty, Energy Fuels, 23, 1998 (2009).

    Article  CAS  Google Scholar 

  19. H. Namkung, L. H. Xu, C. H. Kim, X. Yuan, T. J. Kang and H.T. Kim, Fuel Process. Technol., 141, 82 (2016).

    Article  CAS  Google Scholar 

  20. M. S. Abd-Elhady, S. H. Clevers, T. N. G. Adriaans, C. C. M. Rindt, J. G. Wijers and A. A. van Steenhoven, Int. J. Heat Mass Transfer, 50, 196 (2007).

    Article  Google Scholar 

  21. Y. Pan, F. Si, Z. Xu and C. E. Romero, Powder Technol., 210, 150 (2011).

    Article  CAS  Google Scholar 

  22. E. Raask, J. Thermal Anal., 16, 91 (1979).

    Article  CAS  Google Scholar 

  23. E. Raask, Coal ash sintering model and the rate measurements, Central Electricity Research Laboratories, Surrey, UK, 145 (1982).

    Google Scholar 

  24. H. Hu, K. Zhou, K. Meng, L. Song and Q. Lin, Energies, 10, 242 (2017).

    Article  Google Scholar 

  25. C. H. Pang, B. Hewakandamby, T. Wu and E. Lester, Fuel, 103, 454 (2013).

    Article  CAS  Google Scholar 

  26. T. F. Wall, S. P. Bhattacharya, D. K. Zhang, R. P. Gupta and X. He, Prog. Energy Combust. Sci., 19, 487 (1993).

    Article  CAS  Google Scholar 

  27. A. L. Robinson, S. G. Buckley and L. L. Baxter, Energy Fuels, 15, 66 (2001).

    Article  CAS  Google Scholar 

  28. A.Y. Al-Otoom, G.W. Bryant, L.K. Elliott, B. J. Skrifvars, M. Hupa and T. F. Wall, Energy Fuels, 14, 227 (2000).

    Article  CAS  Google Scholar 

  29. J.W. Bang, Y. J. Lee, D. G. Shin, Y. Kim, S.R. Kim, C. S. Baek and W. T. Kwon, J. Korean Ceram. Soc., 53, 659 (2016).

    Article  CAS  Google Scholar 

  30. A. Michot, D. S. Smith, S. Degot and C. Gault, J. Eur. Ceram. Soc., 28, 2639 (2008).

    Article  CAS  Google Scholar 

  31. J. Bourret, A. Michot, N. Tessier-Dayen, B. Naït-Ali, F. Pennec, A. Alzina, J. Vicente, C. S. Peyratout and D. S. Smith, J. Am. Ceram. Soc., 97, 938 (2014).

    Article  CAS  Google Scholar 

  32. J.D. Watt and F. Fereday, J. Inst. Fuel, 42, 99 (1969).

    CAS  Google Scholar 

  33. H. Namkung, L. H. Xu, T. J. Kang, D. S. Kim, H.B. Kwon and H.T. Kim, Appl. Energy, 102, 1246 (2013).

    Article  CAS  Google Scholar 

  34. H. Namkung, L. H. Xu, W.C. Shin, T. J. Kang and H.T. Kim, Fuel, 117, 1274 (2014).

    Article  CAS  Google Scholar 

  35. H. Namkung, T. J. Kang, L. H. Xu, Y. S. Jeon and H.T. Kim, Korean J. Chem. Eng., 29, 464 (2012).

    Article  CAS  Google Scholar 

  36. C. L. Senior and S. Srinivasachar, Energy Fuels, 9, 277 (1995).

    Article  CAS  Google Scholar 

  37. E. Raask, Mineral impurities in coal combustion, Behavior, Problem and Remedial measure, Hemisphere Publishing, Washington DC (1985).

    Google Scholar 

  38. A.Y. Al-Otoom, L. K. Elliott, T. F. Wall and B. Moghtaderi, Energy Fuels, 14, 994 (2000).

    Article  CAS  Google Scholar 

  39. http://dspace.mit.edu/handle/1721.1/27224 (access: Oct. 2, 2016).

  40. R.W. Bryers, Factors critically affecting fireside deposits in steam generators, in: R. P. Gupta, T. F. Wall, L. L. Baxter (Eds.), pp. 105–131, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).

  41. R.M. German, Powder metallurgy science, 2nd Ed., Princeton, New Jersey (1994).

    Google Scholar 

  42. R. P. Gupta, T.F. Wall and L. L. Baxter, The thermal conductivity of coal ash deposits relationships for particulate and slag structures, in: R. P. Gupta, T. F. Wall, L. L. Baxter (Eds.), pp. 65–84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).

  43. T. F. Wall, S. P. Bhattacharya, L. L. Baxter, G. Richards and J. N. Harb, Fuel Process. Technol., 44, 143 (1995).

    Article  CAS  Google Scholar 

  44. D.W. Anderson, R. Viskanta and F. P. Incropera, J. Eng. Gas Turbines Power, 109, 215 (1987).

    Article  CAS  Google Scholar 

  45. K.C. Mills and J.M. Rhine, Fuel, 68, 904 (1989).

    Article  CAS  Google Scholar 

  46. H.R. Rezaei, R. P. Gupta, G.W. Bryant, J.T. Hart, G. S. Liu, C.W. Bailey, T.F. Wall, S. Miyamae, K. Makino and Y. Endo, Fuel, 79, 1697 (2000).

    Article  CAS  Google Scholar 

  47. http://www.coaltech.com.au/LinkedDocuments/Slagging%20&%20Fouling.pdf (access: Oct. 10, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Taek Kim or Guangsuo Yu.

Additional information

5th International Conference on Gasification and Its Application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namkung, H., Kim, HT., Wang, F. et al. Multilateral approaches for investigation of particle stickiness of coal ash at low temperature fouling conditions. Korean J. Chem. Eng. 34, 3102–3110 (2017). https://doi.org/10.1007/s11814-017-0217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0217-8

Keywords

Navigation