Skip to main content
Log in

Coal fouling characteristic to deposit probe with different temperatures under the gasification condition

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Coal gasification was carried out to verify the coal fouling characteristic in a drop tube furnace (DTF). Four pulverized coal samples, in the range of bituminous and sub-bituminous, were used. To analyze the fouling characteristic by different temperature of deposit probe, a two-stage deposit probe was used in the experiment. Ash deposition rate was at upper deposit probe higher than at lower one. The X-ray fluorescence (XRF) results indicated that coal fouling included acid minerals such as SiO2 and Al2O3 at upper deposit probe more than that at lower deposit probe. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the fouling particles at high deposit temperature were agglomerated more than those at low deposit temperature. And the convective heat transfer efficiency was reduced by ash deposition on probe. Especially, the convective heat transfer coefficient substantially declined with small particle size of fouling and Fe2O3, CaO, and MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Shim, S. J. Lee, Y. D. Yoo, Y. S. Yun and H. T. Kim, Korean J. Chem. Eng., 26(3), 641 (2009).

    Article  CAS  Google Scholar 

  2. Y. S. Yun and Y. D. Yoo, Korean J. Chem. Eng., 18(5), 679 (2001).

    Article  CAS  Google Scholar 

  3. H.M. Shim, S.Y. Jung, H.Y. Wang and H.T. Kim, Korean J. Chem. Eng., 26(2), 324 (2009).

    Article  CAS  Google Scholar 

  4. M.C. Van Beek, C. C.M. Rindt, J.G. Wijers and A.A. Van Steenhoven, Heat Transfer Eng., 22, 22 (2001).

    Article  Google Scholar 

  5. R.W. Bryers, Prog. Energy Combust. Sci., 22, 29 (1996).

    Article  CAS  Google Scholar 

  6. R. P. Gupta, T. F. Wall and L. L. Baxter, The thermal conductivity of coal ash deposits relationships for particulate and slag structures, in: R. P. Gupta, T. F. Wall, L. L. Baxter (Eds.), pp. 65–84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).

    Google Scholar 

  7. J. Wu, Y. Fang, H. Peng and Y. Wang, Fuel Process. Technol., 86, 261 (2004).

    Article  CAS  Google Scholar 

  8. X. Querol, R. Juan, A. Lopez-Soler, J. L. Fernandez-Turiel and C.R. Ruiz, Fuel, 75, 821 (1996).

    Article  CAS  Google Scholar 

  9. S.V. Vassilev, C.G. Vassileva, A. I. Karayigit, Y. Bulut, A. Alastuey and X. Querol, Int. J. Coal Geol., 61, 65 (2005).

    Article  CAS  Google Scholar 

  10. N. Moreno, X. Querol, J. M. Andres, K. Stanton, M. Towler, H. Nugteren, M. Janssen-Jurkovicová and R. Jones, Fuel, 84, 1351 (2005).

    Article  CAS  Google Scholar 

  11. F. Wigley and J. Williamson, Prog. Energy Combust. Sci., 24, 337 (1998).

    Article  CAS  Google Scholar 

  12. H.B. Vuthaluru, J. M. Vleeskens and T. F. Wall, Fuel Process. Technol., 55, 161 (1998).

    Article  CAS  Google Scholar 

  13. G. R. Couch, Understanding slagging and fouling in of combustion, London: IEA Coal Research (1994).

    Google Scholar 

  14. A. F. Skea, T.R. Bott and S. A. Beltagui, Appl. Therm. Eng., 22, 1835 (2002).

    Article  CAS  Google Scholar 

  15. C. J. Geankoplis, Transport processes and unit operation, 3rd Ed., pp. 275–276, Prentice Hall International, Singapore (1995).

    Google Scholar 

  16. S. Kalisz and M. Pronobis, Fuel, 84, 927 (2005).

    Article  CAS  Google Scholar 

  17. M. Pronobis, Fuel, 85, 474 (2006).

    Article  CAS  Google Scholar 

  18. L. H. Xu, H. Namkung, H. B. Kwon and H. T. Kim, J. Ind. Eng. Chem., 15, 98 (2009).

    Article  CAS  Google Scholar 

  19. K. T. Stanton, M.R. Towler, P. Mooney, R.G. Hill and X. Querol, J. Chem. Technol. Biotechnol., 77, 246 (2002).

    Article  CAS  Google Scholar 

  20. X. Wu, Z. Zhang, G. Piao, X. He, Y. Chen, N. Kobayashi, S. Mori and Y. Itaya, Energy Fuels, 23, 2420 (2009).

    Article  CAS  Google Scholar 

  21. O. Font, X. Querol, F. Plana, P. Coca, S. Burgos and F.G. Peña, Fuel, 85, 2229 (2006).

    Article  CAS  Google Scholar 

  22. M. J. Fernández Llorente, J. M. Murillo Laplaza, R. Escalada Cuadrado and J. E. Carrasco García, Fuel, 85, 1157 (2006).

    Article  Google Scholar 

  23. L.Y. Huang, J. S. Norman, M. Pourkashanian and A. Williams, Fuel, 75, 271 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Taek Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namkung, H., Kang, TJ., Xu, LH. et al. Coal fouling characteristic to deposit probe with different temperatures under the gasification condition. Korean J. Chem. Eng. 29, 464–472 (2012). https://doi.org/10.1007/s11814-011-0214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0214-2

Key words

Navigation