Skip to main content
Log in

Carbamazepine and oxcarbazepine removal in pharmaceutical wastewater treatment plant using a mass balance approach: A case study

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The manufacturing of the antiepileptics, carbamazepine (CBZ) and oxcarbazepine (oxCBZ), results in generation of wastewater containing these micropollutants which exhibit toxicity even at trace levels. Therefore, we focused on monitoring their fate and removal in various units of a full-scale wastewater treatment plant (WWTP) using mass balance approach. An apparent CBZ removal of 50±3% was observed by conventional activated sludge process in the biological treatment unit, whereas oxCBZ still persisted after the biological treatment and showed negative mass balance. However, reverse osmosis resulted in 91% oxCBZ removal, whereas CBZ still continued to persist as a result of lower solubility of CBZ as compared to oxCBZ. Only 3% CBZ exhibited sorption onto the suspended solids and sludge, which was negligible for oxCBZ, thus demonstrating their tendency to remain in aqueous phase. Additionally, we attempted to understand the fundamental mechanism behind the removal of these pharmaceuticals and it was apparently the collective effect of sorption, mineralization, biotransformation, biodegradation, phototransformation/photodegradation, etc. Thus, the integrative data presented in the present study on productivity of these pharmaceuticals, their mass loading in influent and effluents allied with their removal efficiency will be significantly constructive in benchmarking the operational effectiveness through operational optimization and design improvement of the current conventional treatment plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Paltiel, G. Fedorova, G. Tadmor, G. Kleinstern, Y. Maor and B. Chefetz, Environ. Sci. Technol., 50(8), 4476 (2016).

    Article  CAS  Google Scholar 

  2. C. M. de Jongh, P. J. F. Kooij, P. de Voogt and T. L. ter Laak, Sci. Total Environ., 427, 70 (2012).

    Article  Google Scholar 

  3. J. Fick, H. Söderström, R. H. Lindberg, C. Phan, M. Tysklind and D.G. J. Larsson, Environ. Toxicol. Chem., 28(12), 2522 (2009).

    Article  CAS  Google Scholar 

  4. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemoller, J. Tobin and A. Morrissey, Int. J. Environ. Sci. Technol., 8(3), 649 (2011).

    Article  CAS  Google Scholar 

  5. A. Jelic, M. Gros, M. Petrovic, A. Ginebreda and D. Barceló, in Emerging and priority pollutants in rivers, H. Guasch, A. Ginebreda and A. Geiszinger Eds., The Handbook of Environmental Chemistry, 19, 1 (2012).

    Google Scholar 

  6. G. Knopp, C. Prasse, T.A. Ternes and P. Cornel, Water Res., 100, 580 (2016).

    Article  CAS  Google Scholar 

  7. C. Gadipelly, A. Pérez-González, G.D. Yadav, I. Ortiz, R. Ibáñez, V. K. Rathod and K.V. Marathe, Ind. Eng. Chem. Res., 53(29), 11571 (2014).

    Article  CAS  Google Scholar 

  8. Y. Zhang, S.U. Geißen and C. Gal, Chemosphere, 73, 1151 (2008).

    Article  CAS  Google Scholar 

  9. X. S. Miao, J. J. Yang and C.D. Metcalfe, Environ. Sci. Technol., 39, 7469 (2005).

    Article  CAS  Google Scholar 

  10. M. Leclercq, O. Mathieu, E. Gomez, C. Casellas, H. Fenet and D. Hillaire-Buys, Arch. Environ. Contam. Toxicol., 56, 408 (2009).

    Article  CAS  Google Scholar 

  11. N. Collado, S. Rodriguez-Mozaz, M. Gros, A. Rubirola, D. Barceló, J. Comas, I. Rodriguez-Roda and G. Buttiglieri, Environ. Pollut., 185, 202 (2014).

    Article  CAS  Google Scholar 

  12. R. Gurke, M. Rößler, C. Marx, S. Diamond, S. Schubert, R. Oertel and J. Fauler, Sci. Total Environ., 532, 762 (2015).

    Article  CAS  Google Scholar 

  13. P. J. Phillips, S. G. Smith, D.W. Koplin, S.D. Zaugg, H.T. Buxton, E.T. Furlong, K. Esposito and B. Stinson, Environ. Sci. Technol., 44(13), 4910 (2010).

    Article  CAS  Google Scholar 

  14. S. Puig, M. C. M. Loosdrecht, J. Colprim and S. C. F. Meijer, Water Res., 42(18), 4645 (2008).

    Article  CAS  Google Scholar 

  15. M. Cirja, P. Ivaschechkin, A. Schäffer and P.F.X. Corvini, Rev. Environ. Sci. Biotechnol., 7(1), 61 (2008).

    Article  CAS  Google Scholar 

  16. C. Klein, S. O’Connor and J. Locke, in Fate of pharmaceuticals in the environment and in water treatment systems, D. S. Aga Ed., CRC Press, New York (2008).

  17. J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou and X. Hu, Chem. Eng. J., 222, 150 (2013).

    Article  CAS  Google Scholar 

  18. M. Bernhard, J. Müller and T. P. Knepper, Water Res., 40(18), 3419 (2006).

    Article  CAS  Google Scholar 

  19. S.K. Behera, H.W. Kim, J. Oh and H. Park, Sci. Total Environ., 409(20), 4351 (2011).

    Article  CAS  Google Scholar 

  20. N. Paxéus, Water Sci. Technol., 50(5), 253 (2004).

    Google Scholar 

  21. M. Clara, B. Strenn and N. Kreuzinger, Water Res., 38(4), 947 (2004).

    Article  CAS  Google Scholar 

  22. C. Marx, N. Günther, S. Schubert, R. Oertel, M. Ahnert, P. Krebs and V. Kuehn, Sci. Total Environ., 538, 779 (2015).

    Article  CAS  Google Scholar 

  23. P. Verlicchi, M. A. Aukidy and E. Zambello, Sci. Total Environ., 429, 123 (2012).

    Article  CAS  Google Scholar 

  24. T.A. Ternes, N. Herrmann, M. Bonerz, T. Knacker, H. Siegrist and A. Joss, Water Res., 38(19), 4075 (2004).

    Article  CAS  Google Scholar 

  25. A. Joss, E. Keller, A. C. Alder, A. Göbel, C. S. McArdell, T. Ternes and H. Siegrist, Water Res., 39(14), 3139 (2005).

    Article  CAS  Google Scholar 

  26. POSEIDON Final Report, T. Ternes, Contract No. EVK1-CT-2000-00047 (2006).

  27. E.D. Laurentiis, S. Chiron, S. Kouras-Hadef, C. Richard, M. Minella, V. Maurino, C. Minero and D. Vione, Environ. Sci. Technol., 46(15), 8164 (2012).

    Article  Google Scholar 

  28. J. Heidler and R.U. Halden, Environ. Sci. Technol., 42(17), 6324 (2008).

    Article  CAS  Google Scholar 

  29. E. Kaiser, C. Prasse, M. Wagner, K. Bröder and T. A. Ternes, Environ. Sci. Technol., 48(17), 10208 (2014).

    Article  CAS  Google Scholar 

  30. Z. Li, H. Fenet, E. Gomez and S. Chiron, Water Res., 45(4), 1587 (2011).

    Article  CAS  Google Scholar 

  31. U. Hübner, B. Seiwert, T. Reemtsma and M. Jekel, Water Res., 49, 34 (2014).

    Article  Google Scholar 

  32. V.M. Monsalvo, J. Lopez, M. Munoz, Z. M. de Pedro, J. A. Casas, A. F. Mohedano and J. J. Rodriguez, Chem. Eng. J., 264, 856 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Avtar Pandey.

Electronic supplementary material

11814_2017_190_MOESM1_ESM.pdf

Carbamazepine and oxcarbazepine removal in pharmaceutical wastewater treatment plant using a mass balance approach: A case study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, K., Morone, A., Pratape, V. et al. Carbamazepine and oxcarbazepine removal in pharmaceutical wastewater treatment plant using a mass balance approach: A case study. Korean J. Chem. Eng. 34, 2662–2671 (2017). https://doi.org/10.1007/s11814-017-0190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0190-2

Keywords

Navigation