Skip to main content
Log in

Influence of ethanol as bore fluid component on the morphological structure and performance of PES hollow fiber membrane for oil in water separation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The relationships among varying bore fluid compositions containing ethanol/water were studied. The ethanol composition was varied in the ratio of 0%, 25%, 50%, 75% and 100%. The membrane dope solutions were prepared from 17.25 wt% polyethersulfone (PES), 0.75 wt% polyethylene glycol (PEG), 3 wt% silicon dioxide sol and 78.25 wt% of 1-methyl-2-pyrrolidone (NMP) via dry-jet spinning process. The membranes’ morphology as a result of varying ethanol ratio in the bore fluid composition was characterized and their effects on crude oil/water emulsion separation were evaluated. Results show that the membrane pore size and porosity decreased with increasing ethanol content in the bore fluid mixture, whereas the inner wall thickness of fibers increased. Furthermore, an increase in ethanol concentration also resulted in a slight increase in water contact angle. The use of 100/0 of ethanol/water resulted in UF membranes with the lowest performance. On the other hand, bore fluid mixture containing 25/75 ethanol/water produced membrane with the best performance for crude oil/water separation. Overall, the use of bore fluid mixture containing 25/75 ethanol/water mixture was found to be a powerful way to tune the morphological properties and performance of HF membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saghafi, M. Zarrebini, D. Semnani and M. Mahmoudi, Text. Res. J., 85, 281 (2014).

    Article  Google Scholar 

  2. A. L. Ahmad, A.A. Abdulkarim, S. Ismail and O. B. Seng, Korean J. Chem. Eng., 33, 997 (2016).

    Article  CAS  Google Scholar 

  3. S. P. Ravi, K. Cheedrala and M. S. Diallo, J. Nanopart. Res., 14, 884 (2012).

    Article  Google Scholar 

  4. T. A. Otitoju, A. L. Ahmad and B. S. Ooi, J. Water Process Eng., 14, 41 (2016).

    Article  Google Scholar 

  5. D. Khojasteh, M. Kazerooni, S. Salarian and R. Kamali, J. Ind. Eng. Chem., 42, 1 (2016).

    Article  CAS  Google Scholar 

  6. F. Tasselli and E. Drioli, J. Memb. Sci., 301, 11 (2007).

    Article  CAS  Google Scholar 

  7. T. A. Otitoju, A. L. Ahmad and B. S. Ooi, J. Ind. Eng. Chem., 47, 19 (2017).

    Article  CAS  Google Scholar 

  8. M. Khayet, C.Y. Feng and T. Matsuura, J. Membr. Sci., 213, 159 (2003).

    Article  CAS  Google Scholar 

  9. M. Li, M. Liu, Y. Xu and Y. Qin, Fibers Polym., 14, 616 (2013).

    Article  CAS  Google Scholar 

  10. B. P. Ter Meulen, Basic Principles of Membrane Technology, Recl des Trav Chim des Pays-Bas, Dordrecht (1992).

    Google Scholar 

  11. X. Tan, N. Liu, B. Meng and S. Liu, J. Membr. Sci., 378, 308 (2011).

    Article  CAS  Google Scholar 

  12. W. Yin, B. Meng, X. Meng and X. Tan, J. Alloys Compd., 476, 566 (2009).

    Article  CAS  Google Scholar 

  13. Z. Wang, N. Yang and B. Meng, Ind. Eng. Chem. Res., 48, 510 (2009).

    Article  CAS  Google Scholar 

  14. B. Zydorczak, Z. Wu and K. Li, Chem. Eng. Sci., 64, 4383 (2009).

    Article  CAS  Google Scholar 

  15. A. Salahi, T. Mohammadi, R. M. Behbahani and M. Hemmati, Korean J. Chem. Eng., 32, 1101 (2015).

    Article  CAS  Google Scholar 

  16. G. Bakeri, M. Rezaei-Dashtarzhandi and A. Fauzi Ismail, Korean J. Chem. Eng., 34, 160 (2017).

    Article  CAS  Google Scholar 

  17. C. H. Loh and R. Wang, J. Membr. Sci., 466, 130 (2014).

    Article  CAS  Google Scholar 

  18. P.Z. Çulfaz, M. Wessling and R. G. H. Lammertink, J. Membr. Sci., 369, 221 (2011).

    Article  Google Scholar 

  19. S. Bonyadi, T. S. Chung and W. B. Krantz, J. Membr. Sci., 299, 200 (2007).

    Article  CAS  Google Scholar 

  20. A.F. Ismail, M. I. Mustaffar, R.M. Illias and M.S. Abdullah, Sep. Purif. Technol., 49, 10 (2006).

    Article  CAS  Google Scholar 

  21. L. Shi, R. Wang and Y. Cao, J. Membr. Sci., 305, 215 (2007).

    Article  CAS  Google Scholar 

  22. X. Li, H. Liu and C. Xiao, J. Appl. Polym. Sci., 128, 1054 (2013).

    Article  CAS  Google Scholar 

  23. A. Idris, A. F. Ismail, M.Y. Noordin and S. J. Shilton, J. Membr. Sci., 205, 223 (2002).

    Article  CAS  Google Scholar 

  24. F. Tasselli, J. C. Jansen, F. Sidari and E. Drioli, J. Membr. Sci., 255, 13 (2005).

    Article  CAS  Google Scholar 

  25. Y. Liu, G. H. Koops and H. Strathmann, J. Membr. Sci., 223, 187 (2003).

    Article  CAS  Google Scholar 

  26. R.C. Ruaan, H. L. Chou, H. A. Tsai and J.Y. Lai, J. Membr. Sci., 190, 135 (2001).

    Article  CAS  Google Scholar 

  27. S. Yang and Z. Liu, J. Membr. Sci., 222, 87 (2003).

    Article  CAS  Google Scholar 

  28. Z.K. Xu, L.Q. Shen and Q. Yang, J. Membr. Sci., 223, 105 (2003).

    Article  CAS  Google Scholar 

  29. T. Liu, S. Xu and D. Zhang, Desalination, 85, 1 (1991).

    Article  CAS  Google Scholar 

  30. Y. Peng, Y. Dong and H. Fan, DES., 316, 53 (2013).

    Article  CAS  Google Scholar 

  31. P. Praveen, D. Thi, T. Nguyen and K. Loh, Biochem. Eng. J., 94, 125 (2015).

    Article  CAS  Google Scholar 

  32. S.A. McKelvey, D.T. Clausi and W. J. Koros, J. Membr. Sci., 124, 223 (1997).

    Article  CAS  Google Scholar 

  33. F. Tasselli, J. C. Jansen and E. Drioli, J. Appl. Polym. Sci., 91, 841 (2004).

    Article  CAS  Google Scholar 

  34. A. Razmjou, A. Resosudarmo and R. L. Holmes, Desalination, 287, 271 (2012).

    Article  CAS  Google Scholar 

  35. A. Mansourizadeh and A.R. Pouranfard, Chem. Eng. Res. Des., 92, 181 (2014).

    Article  CAS  Google Scholar 

  36. S.C. Pesek and W. J. Koros, J. Membr. Sci., 88, 1 (1994).

    Article  CAS  Google Scholar 

  37. S. Doi and K. Hamanaka, Desalination, 80, 167 (1991).

    Article  CAS  Google Scholar 

  38. J. J. Shieh and T.S. Chung, J. Membr. Sci., 140, 67 (1998).

    Article  CAS  Google Scholar 

  39. S. Doi and K. Hamanaka, Desalination, 80, 167 (1991).

    Article  CAS  Google Scholar 

  40. X. Yang, L. Zhu and Y. Chen, Appl. Surf. Sci., 349, 916 (2015).

    Article  CAS  Google Scholar 

  41. J. Qin and T. S. Chung, J. Membr. Sci., 157, 35 (1999).

    Article  CAS  Google Scholar 

  42. X. Zhu, Z. Zhang and B. Ge, J. Colloid Interface Sci., 432, 105 (2014).

    Article  CAS  Google Scholar 

  43. E. Fontananova, J.C. Jansen and A. Cristiano, Desalination, 192, 190 (2006).

    Article  CAS  Google Scholar 

  44. L.Y. Susan, S. Ismail, B. S. Ooi and H. Mustapa, J. Water Process Eng., 15, 55 (2016).

    Article  Google Scholar 

  45. X. S. Yi, S.L. Yu and W.X. Shi, Desalination, 319, 38 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Latif Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otitoju, T.A., Ahmad, A.L. & Ooi, B.S. Influence of ethanol as bore fluid component on the morphological structure and performance of PES hollow fiber membrane for oil in water separation. Korean J. Chem. Eng. 34, 2703–2709 (2017). https://doi.org/10.1007/s11814-017-0189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0189-8

Keywords

Navigation