Skip to main content

Advertisement

Log in

A study on the direct catalytic steam gasification of coal for the bench-scale system

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various techniques have been developed to increase the efficiency of coal gasification. The use of a catalyst in the catalytic-steam gasification process lowers the activation energy required for the coal gasification reaction. Catalytic-steam gasification uses steam rather than oxygen as the oxidant and can lead to an increased H2/CO ratio. The purpose of this study was to evaluate the composition of syngas produced under various reaction conditions and the effects of these conditions on the catalyst performance in the gasification reaction. Simultaneous evaluation of the kinetic parameters was undertaken through a lab-scale experiment using Indonesian low rank coals and a bench-scale catalytic-steam gasifier design. The composition of the syngas and the reaction characteristics obtained in the lab- and bench-scale experiments employing the catalytic gasification reactor were compared. The optimal conditions for syngas production were empirically derived using lab-scale catalytic-steam gasification. Scale-up of a bench-scale catalytic-steam gasifier was based on the lab-scale results based on the similarities between the two systems. The results indicated that when the catalytic-steam gasification reaction was optimized by applying the K2CO3 catalyst to low rank coal, a higher hydrogen yield could be produced compared to the conventional gasification process, even at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change (Vol. 3). Cambridge University Press (2015).

  2. World Energy Resources: Coal World Energy Council (2013).

  3. T. Takarada, Y. Tamai and A. Tomita, Fuel, 64(10), 1438 (1985).

    Article  CAS  Google Scholar 

  4. F. Huhn, J. Klein and H. Jüntgen, Fuel, 62(2), 196 (1983).

    Article  CAS  Google Scholar 

  5. N. C. Nahas, Fuel, 62(2), 239 (1983).

    Article  CAS  Google Scholar 

  6. T. Wigmans, R. Elfring and J. A. Moulijn, Carbon, 21(1), 1 (1983).

    Article  CAS  Google Scholar 

  7. D.W. McKee, C.L. Spiro, P.G. Kosky and E. J. Lamby, Fuel, 62(2), 217 (1983).

    Article  CAS  Google Scholar 

  8. K. J. Hüttinger and R. Minges, Fuel, 64(4), 486 (1985).

    Article  Google Scholar 

  9. R. J. Lang, Fuel, 65(10), 1324 (1986).

    Article  CAS  Google Scholar 

  10. T. Takarada, S. Ichinose and K. Kato, Fuel, 71(8), 883 (1992).

    Article  CAS  Google Scholar 

  11. H. Kubiak, H. J. Schröter, A. Sulimma and K. H. van Heek, Fuel, 62(2), 242 (1983).

    Article  CAS  Google Scholar 

  12. L. Kühn and H. Plogmann, Fuel, 62(2), 205 (1983).

    Article  Google Scholar 

  13. H. Jüntgen, Fuel, 62(2), 234 (1983).

    Article  Google Scholar 

  14. A. Triantoro and D. Diniyati, J. Novel Carbon Resource Sciences, 7, 68 (2013).

    Google Scholar 

  15. S. J. Yuh and E. E. Wolf, Fuel, 62(6), 738 (1983).

    Article  CAS  Google Scholar 

  16. G. Bruno, M. Buroni, L. Carvani, G. Del Piero and G. Passoni, Fuel, 67(1), 67 (1988).

    Article  CAS  Google Scholar 

  17. A. Tomita, Y. Watanabe, T. Takarada, Y. Ohtsuka and Y. Tamai, Fuel, 64(6), 795 (1985).

    Article  CAS  Google Scholar 

  18. P.K. Bakkerud, Catal. Today, 106(1), 30 (2005).

    Article  CAS  Google Scholar 

  19. W.Y. Wen, Mechanisms of alkali metal catalysis in the gasification of coal, char, or graphite. Catal. Rev.—Sci. Eng., 22(1), 1 (1980).

    Article  CAS  Google Scholar 

  20. X. Yuan, L. Zhao, H. Namkung, T. J. Kang and H.T. Kim, Fuel Processing Technol., 141, 44 (2016).

    Article  CAS  Google Scholar 

  21. C.A. Euker and R.A. Reitz, Exxon catalytic coal gasification process development program. Final Project Report for the U. S. Department of Energy under Contract No. ET-78-C-01-2777 (1981).

    Google Scholar 

  22. A.C. Sheth, C. Sastry, Y.D. Yeboah, Y. Xu and P. Agarwal, J. Air Waste Manage. Association, 53(4), 451 (2003).

    Article  CAS  Google Scholar 

  23. X. Yuan, Performance evaluation of potassium catalyst recovery process in the K 2 CO 3-catalyzed steam gasification system, Ajou University (2016).

    Google Scholar 

  24. S.H. Lee and S.D. Kim, Korean Chem. Eng. Res., 46(3), 443 (2008).

    CAS  Google Scholar 

  25. J.M. Lee, Y. J. Kim, W. J. Lee and S.D. Kim, Hwahak Konghak, 35(1), 121 (1997).

    CAS  Google Scholar 

  26. D.W. McKee, Carbon, 20(1), 59 (1982).

    Article  CAS  Google Scholar 

  27. Z. L. Liu and H. H. Zhu, Fuel, 65(10), 1334 (1986).

    Article  CAS  Google Scholar 

  28. A. Karimi and M.R. Gray, Fuel, 90(1), 120 (2011).

    Article  CAS  Google Scholar 

  29. T. Suzuki, M. Mishima, J. Kitaguchi, M. Itoh and Y. Watanabe, Fuel Processing Technol., 8(3), 205 (1984).

    Article  CAS  Google Scholar 

  30. C. L. Spiro, D.W. Mckee, P.G. Kosky and E. J. Lamby, Fuel, 62(2), 180 (1983).

    Article  CAS  Google Scholar 

  31. P. J. Walker Jr., M. Shelef and R. A. Anderson, Catalysis of carbon gasification, Chem. Phys. Carbon; (United States), 4 (1968)

    Google Scholar 

  32. D.A. Sams, T. Talverdian and F. Shadman, Fuel, 64(9), 1208 (1985).

    Article  CAS  Google Scholar 

  33. E. J. Hippo and D. Tandon, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996).

    CAS  Google Scholar 

  34. F. J. Long and K.W. Sykes, J. Chim. Phys., 47, 361 (1950).

    Article  CAS  Google Scholar 

  35. D.W. McKee, Carbon, 12(4), 453 (1974).

    Article  CAS  Google Scholar 

  36. W. L. Holstein and M. Boudart, Fuel, 62(2), 162 (1983).

    Article  CAS  Google Scholar 

  37. Y.T. Kim, D. K. Seo and J. H. Hwang, Korean Chem. Eng. Res., 49(3), 372 (2011).

    Article  CAS  Google Scholar 

  38. T. J. Kang, H. Namkung, L. H. Xu, H. Park, K. Hakizimana, J. De Dieu and H.T. Kim, Asia-Pacific J. Chem. Eng., 11(2), 237 (2016).

    Article  CAS  Google Scholar 

  39. D. Kunii and O. Levenspiel, Fluidization Engineering, Elsevier (2013).

    Google Scholar 

  40. J.Y. Park, D. K. Lee, S. C. Hwang, S. K. Kim, S. H. Lee, S. K. Yoon, J. H. Yoo, S. H. Lee and Y.W. Rhee, Clean Technol., 19(3), 306 (2013).

    Article  Google Scholar 

  41. J.M. Lee, Y. J. Kim and S.D. Kim, Appl. Therm. Eng., 18(11), 1013 (1998).

    Article  CAS  Google Scholar 

  42. Y. Liu, J. Qian and J. Wang, Fuel Processing Technol., 63(1), 45 (2000).

    Article  CAS  Google Scholar 

  43. W.B. Hauserman, Int. J. Hydrogen Energy, 19(5), 413 (1994).

    Article  CAS  Google Scholar 

  44. R.C. Timpe, R.W. Kulas, W.B. Hauserman, R.K. Sharma, E. S. Olson and W.G. Willson, Int. J. Hydrogen Energy, 22(5), 487 (1997).

    Article  CAS  Google Scholar 

  45. D.W. McKee, Fuel, 62(2), 170 (1983).

    Article  CAS  Google Scholar 

  46. J.M. Saber, J. L. Falconer and L. F. Brown, J. Catal., 90(1), 65 (1984).

    Article  CAS  Google Scholar 

  47. B. J. Wood and K.M. Sancier, Catal. Rev. Sci. Eng., 26(2), 233 (1984).

    Article  CAS  Google Scholar 

  48. J. Wang, K. Sakanishi, I. Saito, T. Takarada and K. Morishita, Energy Fuels, 19(5), 2114 (2005).

    Article  CAS  Google Scholar 

  49. M. Matsukata, T. Fujikawa, E. Kikuchi and Y. Morita, Energy Fuels, 2(6), 750 (1988).

    Article  CAS  Google Scholar 

  50. J. Kopyscinski, M. Rahman, R. Gupta, C. A. Mims and J. M. Hill, Fuel, 117, 1181 (2014).

    Article  CAS  Google Scholar 

  51. J. Wang, M. Jiang, Y. Yao, Y. Zhang and J. Cao, Fuel, 88(9), 1572 (2009).

    Article  CAS  Google Scholar 

  52. O.C. Kural, (Ed.), Coal: resources, properties, utilization, pollution, Istanbul Technical University (1994).

    Google Scholar 

  53. D. Tristantini, D. Supramono and R.K. Suwignjo, Int. J. Technol., 6, 22 (2015).

    Article  Google Scholar 

  54. A. Kumar, D. D. Jones and M.A. Hanna, Energies, 2(3), 556 (2009).

    Article  CAS  Google Scholar 

  55. W. J. Lee and S.D. Kim, Fuel, 74(9), 1387 (1995).

    Article  CAS  Google Scholar 

  56. W. J. Lee, S.D. Kim and B. H. Song, Korean J. Chem. Eng., 18(5), 640 (2001).

    Article  CAS  Google Scholar 

  57. M. Vajpeyi, S.K. Awasthi and G. N. Pandey, Energy, 11(6), 563 (1986).

    Article  CAS  Google Scholar 

  58. K. Miura, K. Hashimoto and P. L. Silveston, Fuel, 68(11), 1461 (1989).

    Article  CAS  Google Scholar 

  59. S. Kasaoka, Y. Sakata and C. Tong, Int. Chem. Eng.; (United States), 25(1) (1985).

    Google Scholar 

  60. F. Bustamante, R. M. Enick, A.V. Cugini, R. P. Killmeyer, B. H. Howard, K. S. Rothenberger, M.V. Ciocco, B.D. Morreale, S. Chattopadhyay and S. Shi, AIChE J., 50(5), 1028 (2004).

    Article  CAS  Google Scholar 

  61. D. H. Lee, H. Yang, R. Yan and D.T. Liang, Fuel, 86(3), 410 (2007).

    Article  CAS  Google Scholar 

  62. H. Thunman, F. Niklasson, F. Johnsson and B. Leckner, Energy Fuels, 15(6), 1488 (2001).

    Article  CAS  Google Scholar 

  63. F. Yan, S.Y. Luo, Z.Q. Hu, B. Xiao and G. Cheng, Bioresour. Technol., 101(14), 5633 (2010).

    Article  CAS  Google Scholar 

  64. M. Ishida and C.Y. Wen, AIChE J., 14(2), 311 (1968).

    Article  CAS  Google Scholar 

  65. C.Y. Wen, Ind. Eng. Chem., 60(9), 34 (1968).

    Article  CAS  Google Scholar 

  66. B. H. Song, Y.W. Jang and Y. S. Byeon, Korean Chem. Eng. Res., 41(3), 19 (2003).

    Google Scholar 

  67. D.A. Fox and A. H. White, Ind. Eng. Chem., 23(3), 259 (1931).

    Article  CAS  Google Scholar 

  68. D.W. McKee and D. Chatterji, Carbon, 13(5), 381 (1975).

    Article  CAS  Google Scholar 

  69. D.A. Sams, T. Talverdian and F. Shadman, Fuel, 64(9), 1208 (1985).

    Article  CAS  Google Scholar 

  70. T. Wigmans, H. Haringa and J. A. Moulijn, Fuel, 62(2), 185 (1983).

    Article  CAS  Google Scholar 

  71. J. Wang, K. Sakanishi, I. Saito, T. Takarada and K. Morishita, Energy Fuels, 19(5), 2114 (2005).

    Article  CAS  Google Scholar 

  72. J. Wang, Y. Yao, J. Cao and M. Jiang, Fuel, 89(2), 310 (2010).

    Article  CAS  Google Scholar 

  73. I. L. Freriks, H. M. van Wechem, J. C. Stuiver and R. Bouwman, Fuel, 60(6), 463 (1981).

    Article  CAS  Google Scholar 

  74. Q. Liu, H. Hu, Q. Zhou, S. Zhu and G. Chen, Fuel, 83(6), 713 (2004).

    Article  CAS  Google Scholar 

  75. S. J. Seo, S. J. Lee and J.M. Sohn, Clean Technol., 20(1), 72 (2014).

    Article  Google Scholar 

  76. A. Sharma, T. Takanohashi and I. Saito, Fuel, 87(12), 2686 (2008).

    Article  CAS  Google Scholar 

  77. C. Lee, S. M. Cho, Y.D. Yoo and Y. Yun, Korea Soc. Energy Eng., 143 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Taek Kim.

Additional information

5th International Conference on Gasification and Its Application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, TJ., Park, H., Namkung, H. et al. A study on the direct catalytic steam gasification of coal for the bench-scale system. Korean J. Chem. Eng. 34, 2597–2609 (2017). https://doi.org/10.1007/s11814-017-0167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0167-1

Keywords

Navigation