Skip to main content
Log in

Gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification were investigated. One kind of lignite and three kinds of bituminous coals were used as the samples, and their coal ranks follow the ascending order: XB < KL < ZJ < GD. As characterized by the comprehensive gasification index, the gasification reactivity of coal chars follows the descending order: XB > KL > ZJ > GD. Through systematically analyzing factors affecting gasification reactivity, it was ascertained that the gasification reactivity is mostly determined by the carbonaceous structure. The gasification reactivity is inversely proportional to the coal rank, and the higher the coal rank, the lower the gasification reactivity. A new kinetic model was proposed to calculate the kinetic parameters, in which the reaction order was considered as an unknown kinetic parameter. The reaction order n follows the ascending order: XB < KL < ZJ < GD, which are n = 1.00, n = 1.34, n = 1.83, and n = 2.63, respectively. It is proved that the reaction order is proportional to the coal rank, and the higher the coal rank, the higher the reaction order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. BP, Statistical review of world energy (2019-10-25). https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

  2. Y. Li, C.L. Zhou, N. Li, K.D. Zhi, Y.M. Song, R.X. He, Y.Y. Teng, Q.S. Liu, Energy Fuels 29 (2015) 4738–4746.

    Article  Google Scholar 

  3. E. Yaghoubi, Q.G. Xiong, M.H. Doranehgard, M.M. Yeganeh, G. Shahriari, M. Bidabadi, Chem. Eng. Process. Process Intensif. 126 (2018) 210–221.

    Article  Google Scholar 

  4. S. Chuayboon, S. Abanades, S. Rodat, Chem. Eng. Process. Process Intensif. 125 (2018) 253–265.

    Article  Google Scholar 

  5. V. Subramani, S.K. Gangwal, Energy Fuels 22 (2008) 814–839.

    Article  Google Scholar 

  6. Z.G. Wen, F.X. Meng, J.H. Di, Q.L. Tan, J. Clean. Prod. 113 (2016) 231–240.

    Article  Google Scholar 

  7. K. Miura, K. Hashimoto, P.L. Silveston, Fuel 68 (1989) 1461–1467.

    Article  Google Scholar 

  8. S. Kajitani, S. Hara, H. Matsuda, Fuel 81 (2002) 539–546.

    Article  Google Scholar 

  9. F. Wang, X. Zeng, Y.G. Wang, J. Yu, G.W. Xu, Fuel Process. Technol. 141 (2016) 2–8.

    Article  Google Scholar 

  10. C. Dupont, T. Nocquet, J.A. Da Costa, C. Verne-Tournon, Bioresour. Technol. 102 (2011) 9743–9748.

    Article  Google Scholar 

  11. N. Li, Y. Li, Y.P. Ban, Y.M. Song, K.D. Zhi, Y.Y. Teng, R.X. He, H.C. Zhou, Q.S. Liu, Y.D. Qi, Int. J. Hydrogen Energy 42 (2017) 5865–5872.

    Article  Google Scholar 

  12. R.R. Lu, J. Wang, Q.S. Liu, Y. Wang, G.S. Te, Y.P. Ban, N. Li, X.R. Zhang, R.X. He, H.C. Zhou, K.D. Zhi, Int. J. Hydrogen Energy 42 (2017) 9679–9687.

    Article  Google Scholar 

  13. F.F. Xu, B. Wang, D. Yang, Y.Y. Qiao, Y.Y. Tian, Waste Manage. 80 (2018) 64–72.

    Article  Google Scholar 

  14. S.H. Zhu, Y.H. Bai, K. Luo, C.H. Hao, W.R. Bao, F. Li, J. Anal. Appl. Pyrol. 128 (2017) 13–17.

    Article  Google Scholar 

  15. S. Septien, F.J. Escudero Sanz, S. Salvador, S. Valin, Energy 142 (2018) 68–78.

  16. K. Jayaraman, I. Gokalp, E. Bonifaci, N. Merlo, Fuel 154 (2015) 370–379.

    Article  Google Scholar 

  17. F. Wang, X. Zeng, Y.G. Wang, H. Su, J. Yu, G.W. Xu, Fuel 164 (2016) 403–409.

    Article  Google Scholar 

  18. W. Huo, Z.J. Zhou, F.C. Wang, Y.F. Yang, G.S. Yu, Fuel 131 (2014) 59–65.

    Article  Google Scholar 

  19. M.F. Irfan, M.R. Usman, K. Kusakabe, Energy 36 (2011) 12–40.

    Article  Google Scholar 

  20. A. Dutta, M.E. Ryan, Thermochim. Acta 33 (1979) 87–92.

    Article  Google Scholar 

  21. K. Miura, P.L. Silveston, Energy Fuels 3 (1989) 243–249.

    Article  Google Scholar 

  22. R. Buczyński, G. Czerski, K. Zubek, R. Weber, P. Grzywacz, Fuel 228 (2018) 50–61.

    Article  Google Scholar 

  23. G.W. Wang, J.L. Zhang, X.M. Hou, J.G. Shao, W.W. Geng, Bioresour. Technol. 177 (2015) 66–73.

    Article  Google Scholar 

  24. J.J. Xu, H.B. Zuo, G.W. Wang, J.L. Zhang, K. Guo, W. Liang, Appl. Therm. Eng. 152 (2019) 605–614.

    Article  Google Scholar 

  25. G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, H.Y. Wang, X.Y. Li, P.C. Zhang, W.W. Geng, G.H. Zhang, Energy 114 (2016) 143–154.

    Article  Google Scholar 

  26. S.S. Razavi-Tousi, J.A. Szpunar, Int. J. Hydrogen Energy 41 (2016) 87–93.

    Article  Google Scholar 

  27. M.E. Mostafa, L. He, J. Xu, S. Hu, Y. Wang, S. Su, X. Hu, S.A. Elsayed, J. Xiang, Energy 179 (2019) 343–357.

    Article  Google Scholar 

  28. J. Ochoa, M.C. Cassanello, P.R. Bonelli, A.L. Cukierman, Fuel Process. Technol. 74 (2001) 161–176.

    Article  Google Scholar 

  29. A. Molina, F. Mondragon, Fuel 77 (1998) 1831–1839.

    Article  Google Scholar 

  30. L.T. Vlaev, I.G. Markovska, L.A. Lyubchev, Thermochim. Acta 406 (2003) 1–7.

    Google Scholar 

  31. A.W. Coats, J.P. Redfern, Nature 201 (1964) 68-69.

    Article  Google Scholar 

  32. R. Slezak, L. Krzystek, S. Ledakowicz, Biomass Bioenergy 122 (2019) 336–342.

    Google Scholar 

  33. A. Deshpande, S. Krishnaswamy, K. Ponnani, Chem. Eng. Res. Des. 117 (2017) 382–393.

    Article  Google Scholar 

  34. W. Huo, Z.J. Zhou, X.L. Chen, Z.H. Dai, G.S. Yu, Bioresour. Technol. 159 (2014) 143–149.

    Article  Google Scholar 

  35. P. Lahijani, Z.A. Zainal, A.R. Mohamed, M. Mohammadi, Bioresour. Technol. 144 (2013) 288–295.

    Article  Google Scholar 

  36. X.B. Su, Q. Si, J.X. Song, J. China Coal Soc. 41 (2016) 1197–1202.

    Google Scholar 

  37. M.J. Wang, D.G. Roberts, M.A. Kochanek, D.J. Harris, L.P. Chang, C.Z. Li, Energy Fuels 28 (2014) 285–290.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (U1960205 and 51574023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yj., Zuo, Hb., Zhao, J. et al. Gasification reactivity and kinetic parameters of coal chars for non-isothermal steam gasification. J. Iron Steel Res. Int. 28, 1–9 (2021). https://doi.org/10.1007/s42243-020-00463-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00463-4

Keywords

Navigation