Skip to main content
Log in

Facile synthesis of tungsten carbide-carbon composites for oxygen reduction reaction

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Tungsten carbide-carbon composite (XWC-C, where X=10 or 30 represents the tungsten content) supports were prepared by pyrolyzing tungsten-adsorbed poly(4-vinylpyridine)-functionalized carbon. The supports were used to prepare Pt catalysts (Pt/XWC-C) for oxygen reduction reactions (ORR) in alkaline solution. Prepared XWC-C revealed highly dispersed tungsten carbide species composed of WC and W2C phases. The tungsten carbide species proved to have a positive effect on the dispersion of Pt particles. Compared to the Pt catalyst supported on carbon (Pt/ C), Pt/XWC-C showed higher ORR performance. In addition, the catalytic performance of Pt/XWC-C was enhanced with increasing tungsten carbide content. The highest ORR activity was achieved for the Pt/30WC-C catalyst, which had a 2.9-fold enhanced performance (at 0.8V vs. RHE) compared to that of Pt/C. It is believed that the unique interaction between Pt and the tungsten carbide species was responsible for the enhanced ORR performance of the Pt/XWC-C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Levy and M. Boudart, Science, 181, 547 (1973).

    Article  CAS  Google Scholar 

  2. F. H. Ribeiro, R. A. Dalla Betta, G. J. Guskey and M. Budart, Chem. Mater., 3, 805 (1991).

    Article  CAS  Google Scholar 

  3. J.G. Chen, Chem. Rev., 96, 1477 (1996).

    Article  CAS  Google Scholar 

  4. M. L. H. Green, T. Xiao, A. P. E. York and V. C. Williams, Chem. Mater., 12, 3869 (2000).

    Article  Google Scholar 

  5. R. Venkataraman, H.R. Kunz and J.M. Fenton, J. Electrochem. Soc., 150, A287 (2003).

    Article  Google Scholar 

  6. T. H. Nguyen, A. A. Adesina, E. M.T. Yue, Y. J. Lee, A. Khodakov and M. P. Brungs, J. Chem. Technol. Biot., 79, 286 (2004).

    Article  CAS  Google Scholar 

  7. J.D. Oxley, M. M. Mdleleni and K. S. Suslick, Catal. Today, 88, 139 (2004).

    Article  CAS  Google Scholar 

  8. X. G. Yang and C.Y. Wang, Appl. Phys. Lett., 86, 224104 (2005).

    Article  Google Scholar 

  9. A.R. Ko, Y.W. Lee, J. S. Moon, S.B. Han, G. Cao and K.W. Park, Appl. Catal. A-Gen., 477, 102 (2014).

    Article  CAS  Google Scholar 

  10. H. H. Nersisyan, H. I. Won and C.W. Won, Mater. Lett., 59, 3950 (2005).

    Article  CAS  Google Scholar 

  11. H. Zheng, J. Huang, W. Wang and C. Ma, Electrochem. Commun., 7, 1045 (2005).

    Article  CAS  Google Scholar 

  12. M. Shaobo, Y. Yezhi, W. Longbiao, W. Jun and H. Qinggan, J. Chem. Phys., 13, 487 (2000).

    Google Scholar 

  13. C. Tianyi, Z. Bohong, C. Wenbo and L. Yao, Electrochemistry, 3, 343 (2002).

    Google Scholar 

  14. N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang and J. G. Chen, Angew. Chem. Int. Edit., 120, 8638 (2008).

    Article  Google Scholar 

  15. N.C. Adriana, A. S. M. Sergio and A. A. Luis, Electrochem. Commun., 1, 600 (1999).

    Article  Google Scholar 

  16. Y. Wang, S. Song, V. Maragou and P. K. Shen, Appl. Catal. B: Environ., 89, 223 (2009).

    Article  CAS  Google Scholar 

  17. H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 179, 50 (2008).

    Article  CAS  Google Scholar 

  18. J. B. Joo, J.S. Kim, P. Kim and J. Yi, Mater. Lett., 62, 3497 (2008).

    Article  CAS  Google Scholar 

  19. C. Ma, J. Sheng, N. Brandon, C. Zhang and G. Li, Int. J. Hydrogen Energy, 32, 2824 (2007).

    Article  CAS  Google Scholar 

  20. Y. Liu and W. E. Mustain, ACS Catal., 1, 212 (2011).

    Article  CAS  Google Scholar 

  21. H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 164, 431 (2007).

    Article  CAS  Google Scholar 

  22. G. Cui, P. K. Shen, H. Meng, J. Zhao and G. Wu, J. Power Sources, 196, 6125 (2011).

    Article  CAS  Google Scholar 

  23. Z. J. Mellinger, E. C. Weigert, A. L. Stottlemyer and J. G. Chen, Electrochem. Solid State Lett., 11, B63 (2008).

    Article  CAS  Google Scholar 

  24. T. E. Shubina and M.T.M. Koper, Electrochim. Acta, 47, 3621 (2002).

    Article  CAS  Google Scholar 

  25. R. Ganesan and J. S. Lee, Angew. Chem. Int. Edit., 44, 6557 (2005).

    Article  CAS  Google Scholar 

  26. R. Ganesan and J. S. Lee, J. Power Sources, 157, 217 (2006).

    Article  CAS  Google Scholar 

  27. S. Zhao, A.E. Wangstrom, Y. Liu, W.A. Rigdon and W.E. Mustain, Electrochim. Acta, 157, 175 (2015).

    Article  CAS  Google Scholar 

  28. B. B. Blizanac, P. N. Ross and N. M. Markovic, Electrochim. Acta, 52, 2264 (2007).

    Article  CAS  Google Scholar 

  29. H. Meng and P. K. Shen, Electrochem. Commun., 8, 588 (2006).

    Article  CAS  Google Scholar 

  30. N.R. Elezovic, B. M. Babic, L. Gajic-Krstajic, P. Ercius, V.R. Radmilovic, N.V. Krstajic and L.M. Vracar, Electrochim. Acta, 69, 239 (2012).

    Article  CAS  Google Scholar 

  31. H. Meng and P. K. Shen, Chem. Commun., 1, 4408 (2005).

    Article  Google Scholar 

  32. J.R. Varcoe and R.C.T. Slade, Fuel Cells, 5, 187 (2005).

    Article  CAS  Google Scholar 

  33. X. Ma, H. Meng, M. Cai and P. K. Shen, J. Am. Chem. Soc., 134, 1954 (2012).

    Article  CAS  Google Scholar 

  34. H. Meng and P. K. Shen, J. Phys. Chem. B, 109, 22705 (2005).

    Article  CAS  Google Scholar 

  35. P.N. Ross and P. Stonehart, J. Catal., 48, 42 (1977).

    Article  CAS  Google Scholar 

  36. H. Meng, M. Wu, X. X. Hu, M. Nie, Z.D. Wei and P. K. Shen, Fuel Cells, 6, 447 (2006).

    Article  CAS  Google Scholar 

  37. W. Zhu, A. Ignaszak, C. Song, R. Baker, R. Hui, J. Zhang, F. Nan, G. Botton, S. Ye and S. Campbell, Electrochim. Acta, 61, 198 (2012).

    Article  CAS  Google Scholar 

  38. E.C. Weigert, A. L. Stottlemyer, M.B. Zellner and J. G. Chen, J. Phys. Chem. C, 111, 14617 (2007).

    Article  CAS  Google Scholar 

  39. E.C. Weigert, D.V. Esposito and J. G. Chen, J. Power Sources, 193, 501 (2009).

    Article  CAS  Google Scholar 

  40. H.H. Hwu, K. Kourtakis, J.G. Lavin and J.G. Chen, J. Phys. Chem. B, 105, 10037 (2001).

    Article  CAS  Google Scholar 

  41. M.B. Zellnera and J. G. Chen, J. Electrochem. Soc., 152, A1483 (2005).

    Article  Google Scholar 

  42. N. Liu, K. Kourtakis, J.C. Figueroa and J.G. Chen, J. Catal., 215, 254 (2003).

    Article  CAS  Google Scholar 

  43. D. J. Ham, Y. K. Kim, S. H. Han and J. S. Lee, Catal. Today, 132, 117 (2008).

    Article  CAS  Google Scholar 

  44. H. Zheng, Z. Gu, J. Zhong and W. Wang, J. Mater. Sci. Technol., 23, 591 (2007).

    CAS  Google Scholar 

  45. M.K. Jeona, K.R. Lee, W. S. Lee, H. Daimon, A. Nakahara and S. I. Woo, J. Power Sources, 185, 927 (2008).

    Article  Google Scholar 

  46. C.A. Angelucci, L. J. Deiner and F. C. Nart, J. Solid State Electrochem., 12, 1599 (2008).

    Article  CAS  Google Scholar 

  47. N. Keller, B. Pietruszka and V. Keller, Mater. Lett., 60, 1774 (2006).

    Article  CAS  Google Scholar 

  48. H. E. Sliney, Tribol. Int., 15, 303 (1982).

    Article  CAS  Google Scholar 

  49. F. P. Hu, F.W. Ding, S.Q. Song and P. K. Shen, J. Power Sources, 163, 415 (2006).

    Article  CAS  Google Scholar 

  50. M. Nie, P. K. Shen and Z.D. Wei, J. Power Sources, 167, 69 (2007).

    Article  CAS  Google Scholar 

  51. M. J. Hudson, J.W. Peckett and P. J. F. Harris, Ind. Eng. Chem. Res., 44, 5575 (2005).

    Article  CAS  Google Scholar 

  52. C. Liang, F. Tian, Z. Wei, Q. Xin and C. Li, Nanotechnology, 14, 9 (2003).

    Article  Google Scholar 

  53. R. Koc and S.K. Kodambaka, J. Eur. Ceram. Soc., 20, 1859 (2000).

    Article  CAS  Google Scholar 

  54. G.M. Wang, S. J. Campbell, A. Calka and W. A. Kaczmarek, J. Mater. Sci., 32, 1461 (1997).

    Article  CAS  Google Scholar 

  55. F. L. Zhang, M. Zhu and C.Y. Wang, Int. J. Refract. Met. H., 26, 329 (2008).

    Article  CAS  Google Scholar 

  56. S. Beak, D. Jung, K. S. Nahm and P. Kim, Catal. Lett., 134, 288 (2010).

    Article  CAS  Google Scholar 

  57. C. B. Rodella, D. H. Barrett, S. F. Moya, S. J. A. Figueroa, M.T.B. Pimenta, A.A. S. Curvelo and V.T. Silva, RSC Adv., 5, 23874 (2015).

    Article  CAS  Google Scholar 

  58. R. Wang, C. Tian, L. Wang, B. Wang, H. Zhang and H. Fu, Chem. Commun., 1, 3104 (2009).

    Article  Google Scholar 

  59. D.G. Barton, S. L. Soled and E. Iglesia, Top. Catal., 6, 87 (1998).

    Article  CAS  Google Scholar 

  60. D. Jung, S. Beak, K.S. Nahm and P. Kim, Korean J. Chem. Eng., 27, 1689 (2010).

    Article  CAS  Google Scholar 

  61. B. Li and J. Prakash, Electrochem. Commun., 11, 1162 (2009).

    Article  CAS  Google Scholar 

  62. S. J. Bae, S. J. Yoo, Y. Lim, S. Kim, Y. Lim, J. Choi, K. S. Nahm, S. J. Hwang, T. H. Lim, S. K. Kim and P. Kim, J. Mater. Chem., 22, 8820 (2012).

    Article  CAS  Google Scholar 

  63. Y. Hara, N. Minami, H. Matsumoto and H. Itagaki, Appl. Catal. AGen., 332, 289 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, Y., Jung, J.Y. & Kim, P. Facile synthesis of tungsten carbide-carbon composites for oxygen reduction reaction. Korean J. Chem. Eng. 34, 2162–2168 (2017). https://doi.org/10.1007/s11814-017-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0124-z

Keywords

Navigation