Skip to main content
Log in

Quantification of the risk for hydrate formation during cool down in a dispersed oil-water system

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Gas hydrates are considered a nuisance in the flow assurance of oil and gas production since they can block the flowlines, consequently leading to significant losses in production. Hydrate avoidance has been the traditional approach, but recently, hydrate management is gaining acceptance because the practice of hydrate avoidance has become more and more challenging. For better management of hydrate formation, we investigated the risk of hydrate formation based on the subcooling range in which hydrates form by associating low, medium, and high probability of formation for a gas+oil+water system. The results are based on batch experiments which were performed in an autoclave cell using a mixture gas (CH4: C3H8=91.9 : 8.1 mol%), total liquid volume (200 ml), mineral oil, watercut (30%), and mixing speed (300 rpm). From the measurements of survival curves showing the minimum subcooling required before hydrate can form and hydrate conversion rates for the initial 20 minutes, we developed a risk map for hydrate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dendy Sloan Jr and Carolyn Koh, Clathrate Hydrates of Natural Gases, 3rd Ed., CRC Press (2007).

    Book  Google Scholar 

  2. E.G. Hammerschmidt, Ind. Eng. Chem., 26, 851 (1934).

    Article  CAS  Google Scholar 

  3. E.D. Sloan, C. Koh and A.K. Sum, Natural Gas Hydrates in Flow Assurance, Elsevier, Amsterdam (2010).

    Google Scholar 

  4. P.D. Dholabhai, J. S. Parent and P.R. Bishnoi, Ind. Eng. Chem. Res., 35, 819 (1996).

    Article  CAS  Google Scholar 

  5. A. H. Mohammadi, W. Afzal and D. Richon, J. Chem. Eng. Data, 53, 73 (2008).

    Article  CAS  Google Scholar 

  6. A. Majumdar, E. Mahmoodaghdam and P.R. Bishnoi, J. Chem. Eng. Data, 45, 20 (2000).

    Article  CAS  Google Scholar 

  7. W. Afzal, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 53, 663 (2008).

    Article  CAS  Google Scholar 

  8. W. Afzal, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 52, 2053 (2007).

    Article  CAS  Google Scholar 

  9. K. Shin, J. Kim, Y.-T. Seo and S.-P. Kang, Korean J. Chem. Eng., 31, 2177 (2014).

    Article  CAS  Google Scholar 

  10. A. Vysniauskas and P.R. Bishnoi, Chem. Eng. Sci., 38, 1061 (1983).

    Article  CAS  Google Scholar 

  11. P.R. Bishnoi, A.K. Gupta, P. Englezos and N. Kalogerakis, Fluid Phase Equilib., 53, 97 (1989).

    Article  CAS  Google Scholar 

  12. P.R. Bishnoi and V. Natarajan, Fluid Phase Equilibr., 117, 168 (1996).

    Article  Google Scholar 

  13. D. Lee, Y. Lee, S. Lee and Y. Seo, Korean J. Chem. Eng., 33, 1425 (2016).

    Article  CAS  Google Scholar 

  14. E.D. Sloan, Fluid Phase Equilib., 228-229, 67 (2005).

    Article  CAS  Google Scholar 

  15. K. Kinnari, J. Hundseid, X. Li and K. M. Askvik, J. Chem. Eng. Data, 60, 437 (2015).

    Article  CAS  Google Scholar 

  16. E.O. Straume, C. Kakitani, D. Merino-Garcia, R.E.M. Morales and A. K. Sum, Chem. Eng. Sci., 155, 111 (2016).

    Article  CAS  Google Scholar 

  17. N. Maeda, D. Wells, N. C. Becker, P. G. Hartley, P.W. Wilson, A.D. J. Haymet and K.A. Kozielski, Rev. Sci. Instrum., 82, 065109 (2011).

    Article  Google Scholar 

  18. N. Maeda, D. Wells, P. G. Hartley and K.A. Kozielski, Energy Fuels, 26, 1820 (2012).

    Article  CAS  Google Scholar 

  19. N. Maeda, Fluid Phase Equilib., 413, 142 (2016).

    Article  CAS  Google Scholar 

  20. P.W. Wilson, A. F. Heneghan and A.D. J. Haymet, Cryobiology, 46, 88 (2003).

    Article  CAS  Google Scholar 

  21. P.W. Wilson, D. Lester and A.D. J. Haymet, Chem. Eng. Sci., 60, 2937 (2005).

    Article  CAS  Google Scholar 

  22. P. Linga, R. Kumar and P. Englezos, Chem. Eng. Sci., 62, 4268 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Ram Lee or Amadeu K. Sum.

Additional information

This article is dedicated to Prof. Ki-Pung Yoo on the occasion of his retirement from Sogang University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, GH., Lee, KH., Lee, B.R. et al. Quantification of the risk for hydrate formation during cool down in a dispersed oil-water system. Korean J. Chem. Eng. 34, 2043–2048 (2017). https://doi.org/10.1007/s11814-017-0112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0112-3

Keywords

Navigation