Skip to main content
Log in

State of the Art and Prospects for the Development of the Hydrate-based Technology for Natural Gas Storage and Transportation (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A brief review of laboratory modeling methods of gas hydrate formation in various reactors is given. Installations from both Russia and other countries are analyzed. The development of laboratory hydrate reactors to the semi-industrial scale is considered. The kinetic hydrate promoters and their potential in hydrate-based technologies for gas separation, storage, and transportation are briefly described. The review aims to understand prospects for implementing hydrate technologies into the oil-and-gas industry of Russia and evaluate the world research and development level in this field. The main part of the paper is mainly intended for specialists dealing with the extraction of hydrocarbons and study of gas hydrates, but it can also be of interest to a wider range of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Veluswamy, H.P., Kumar, A., Seo, Y., Lee, J.D., and Linga, P., Appl. Energy, 2018, vol. 216, pp. 262–285. https://doi.org/10.1016/j.apenergy.2018.02.059

    Article  CAS  Google Scholar 

  2. Leveraging Natural Gas to Reduce Greenhouse Gas Emissions, Center for Climate and Energy Solutions, June, 2013. https://www.c2es.org/site/assets/uploads/2013/06/leveraging-natural-gas-reduce-ghg-emissions.pdf

  3. Makal, T.A., Li, J.R., Lu, W., and Zhou, H.C., Chem. Soc. Rev., 2012, vol. 41, no. 23, pp. 7761–7779. https://doi.org/10.1039/C2CS35251F

    Article  CAS  PubMed  Google Scholar 

  4. Yakushev, V.S., Kvon, V.G., Dolgaev, S.I., and Istomin, V.A., Analitik-2009. Sbornik nauchno-tekhnicheskikh obzorov (Analyst-2009. Coll. of Scientific and Technical Reviews, Moscow: Gazprom VNIIGAZ, 2010.

  5. Gudmundsson, J., Mork, M., and Graf, O., Proc. 4th Int. Conf. on Gas Hydrates, Yokogama, Japan, 2002, no. 4, pp. 997–1002.

  6. Shits, E.Yu. and Koryakina, V.V., Gaz. Prom–st., 2020, no. 12, pp. 24–32.

    Google Scholar 

  7. Dolgaev, S.I., Kvon, V.G., Istomin, V.A., Gerasimov, Yu.A., and Troinikova, A.A., Vesti Gaz. Nauki, 2018, vol. 1, pp. 100–116.

    Google Scholar 

  8. Babu, P., Bollineni, C., and Daraboina, N., Energy Fuels, 2021, vol. 35, no. 3, pp. 2514–2519. https://doi.org/10.1021/acs.energyfuels.0c03550

    Article  CAS  Google Scholar 

  9. Parul, S., J. Water Process Eng., 2021, vol. 41, article 102058. https://doi.org/10.1016/j.jwpe.2021.102058

  10. Javanmardi, J., Nasrifar, Kh., Najibi, S.H., and Moshfeghian, M., Appl. Therm. Eng., 2005, vol. 25, nos. 11–12, pp. 1708–1723. https://doi.org/10.1016/j.applthermaleng.2004.10.009

    Article  Google Scholar 

  11. Hassanpouryouzband, A., Joonaki, E., Farahani, M.V., Takeya, S., Ruppel, C., Yang, J., English, N.J., Schicks, J.M., Edlmann, K., Mehrabian, H., Aman, Z.M., and Tohidi, B., Chem. Soc. Rev., 2020, vol. 49, no. 15, pp. 5225–5309. https://doi.org/10.1039/C8CS00989A

    Article  CAS  PubMed  Google Scholar 

  12. Kanda, H., Proc. 23rd World Gas Conf., Amsterdam, Netherlands, 2006. http://members.igu.org/html/wgc2006/pdf/paper/add10399.pdf

  13. Nakai, S., Int. Gas Union World Gas Conf. Papers, 2012, vol. 4, pp. 3040–3049.

    Google Scholar 

  14. Gudmundsson, J. and Borrehaug, A., Proc. 2nd Int. Conf. on Gas Hydrates, Toulouse, France, 1996, vol. 2, pp. 415–422.

  15. Chang, S., SPE Asia Pacific Oil and Gas Conf. and Exhibition, Jakarta, Indonesia, April 2001, SPE-68680-MS. https://doi.org/10.2118/68680-MS

  16. Najibi, H. Rezaei, R., Javanmardi, J., Nasrifar, Kh., and Moshfeghian, M., Appl. Therm. Eng., 2009, vol. 29, no. 10, pp. 2009–2015. https://doi.org/10.1016/j.applthermaleng.2008.10.008

    Article  Google Scholar 

  17. Taheri, Z., Shabani, M.R., Nazari, K., and Mehdizaheh, A., J. Nat. Gas Sci. Eng., 2014, vol. 21, pp. 846–849. https://doi.org/10.1016/j.jngse.2014.09.026

    Article  CAS  Google Scholar 

  18. Semenov, A.P., Medvedev, V.I., Gushchin, P.A., Kotelev, M.S., Yakushev, V.S., Stoporev, A.S., Sizikov, A.A., Ogienko, A.G., and Vinokurov, V.A., Fluid Phase Equil., 2017, vol. 432, pp. 1–9. https://doi.org/10.1016/j.fluid.2016.10.015

    Article  CAS  Google Scholar 

  19. Verrett, J., Posteraro, D., and Servio, P., Chem. Eng. Sci., 2012, vol. 84, pp. 80–84. https://doi.org/10.1016/j.ces.2012.08.009

    Article  CAS  Google Scholar 

  20. Xiao, P., Yang, X.-M., Sun, C.-Y., Cui, J.-L., Li, N., and Chen, G.-J., Chem. Eng. J., 2018, vol. 336, pp. 649–658. https://doi.org/10.1016/j.cej.2017.12.020

    Article  CAS  Google Scholar 

  21. Kozo, Y., Tetsuro, F., Takahiro, K., and Yuichi, K., Patent GB 2347938A, 2000.

  22. Tang, L.-G., Li, X.-S., Feng, Z.-P., Lin, Y.-L., and Fan, S.-S., Eng. Chem. Res., 2006, vol. 45, no. 23, pp. 7934–7940. https://doi.org/10.1021/ie0609259

    Article  CAS  Google Scholar 

  23. Luo, Y.-T., Zhu, J.-H., Fan, S.-S., and Chen, G.-J., Chem. Eng. Sci., 2007, vol. 62, no. 4, pp. 1000–1009. https://doi.org/10.1016/j.ces.2006.11.004

    Article  CAS  Google Scholar 

  24. Lv, Q.-N., Li, X.-S., Xu, C.-G., and Chen, Z.-Y., Ind. Eng. Chem. Res., 2012, vol. 51, no. 17, pp. 5967–5975. https://doi.org/10.1021/ie202422c

    Article  CAS  Google Scholar 

  25. Murakami, T., Kuritsuka, H., Fujii, H., and Mori, Y.H., Energy Fuels, 2009, vol. 23, no. 3, pp. 1619–1625. https://doi.org/10.1021/ef800880f

    Article  CAS  Google Scholar 

  26. Rossi, F., Filipponi, M., and Castellani, B., Appl. Energy, 2012, vol. 99, pp. 167–172. https://doi.org/10.1016/j.apenergy.2012.05.005

    Article  CAS  Google Scholar 

  27. Yuichi, K., Masahiro, T., and Shigeru, N., Patent JP 2006160833, 2006.

  28. Manakov, A.Yu. and Duchkov, A.D., Russ. Geol. Geophys., 2017, vol. 58, no. 2, pp. 240–252. https://doi.org/10.1016/j.rgg.2016.01.023

    Article  Google Scholar 

  29. Duchkov, A.D., Manakov, A.Yu., Kazantsev, S.A., Permyakov, M.E., and Ogienko, A.G., Phys. Solid Earth, 2009, vol. 45, pp. 661–669. https://doi.org/10.1134/S1069351309080060

    Article  Google Scholar 

  30. Adamova, T.P., Manakov, A.Y., and Stoporev, A.S., Russ. J. Appl. Chem., 2019, vol. 92, pp. 607–613. https://doi.org/10.1134/S1070427219050045

    Article  CAS  Google Scholar 

  31. Chuvilin, E.M. and Grebenkin, S.I., Earthʼs Cryosphere, 2015, vol. 19, no. 2, pp. 67–74.

    Google Scholar 

  32. Kuznetsov, F.A., Istomin, V.A., and Rodionova, T.V., Ross. Khim. Zh. (Zh. Ross. Khim. O–va. im. D.I. Mendeleeva), 2003, vol. 47, no. 3, pp. 5–19.

    CAS  Google Scholar 

  33. Manakov, A.Yu. and Stoporev, A.S., Russ. Chem. Rev., 2021, vol. 90, no. 5, pp. 566–600. https://doi.org/10.1070/RCR4986

    Article  Google Scholar 

  34. Yakushev, V.S., Kvon, V.T., Gerasimov, Yu.A., and Istomin, V.A., Sovremennoe sostoyanie gazogidratnykh tekhnologii: Obzornaya informatsiya (State of the Art of Gas Hydrate Technologies: Review Information), Moscow: Gazprom, 2008.

  35. Oyama, H., Ebinuma, T., Nagao, J., and Narita, H., Proc. 6th Int. Conf. on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 2008, July 6–10.

  36. Farhadian, A., Varfolomeev, M.A., Abdelhay, Z., Emelianov, D., Delaunay, A., and Dalmazzone, D., Ind. Eng. Chem. Res., 2019, vol. 58, no. 19, pp. 7752–7760. https://doi.org/10.1021/acs.iecr.9b00803

    Article  CAS  Google Scholar 

  37. Rauh, F. and Mizaikoff, B., Anal. Bioanal. Chem., 2012, vol. 402, no. 1, pp. 163–173. https://doi.org/10.1007/s00216-011-5522-1

    Article  CAS  PubMed  Google Scholar 

  38. Longinos, S.N. and Parlaktuna, M., Int. J. Chem. Reactor Eng., 2021, vol. 19, no. 2, pp. 155–165. https://doi.org/10.1515/ijcre-2020-0231

    Article  CAS  Google Scholar 

  39. Mel’nikov, V.P., Nesterov, A.N., and Feklistov, V.V., Patent RU 2166348, 2001, Byull. Izobret., 2001, no. 13.

  40. Semenov, M.E., Portnyagin, A.S., and Shits, E.Yu., Patent RU 2714468, 2020, Byull. Izobret., 2020, no. 5.

  41. Semenov, M.E., Shits, E.Yu. and Portnyagin, A.S., Transp. Khran. Nefteprod. Uglevodorodn. Syrʼya, 2016, no. 3, pp. 53–58.

    Google Scholar 

  42. Wenling, J., Hancheng, S., and Linbo, Z., Patent CN 101113379A, 2008.

  43. Toshiaki, N., Naoto, M., and Satoshi, Y., Patent JP 2006089419A, 2006.

  44. Katoh, Yu., Nagamori, S., Iwasaki, T., Arai, T., Horiguti, K., Murayama, T., Tokinosu, A., Takahashi, M., and Yamaki, T., Patent RU 2415699, 2011, Byull. Izobret., 2011, no. 10.

  45. Lee, J.D., Kang, K.C., Hong, S.Y., Lim, J.I., Jang, S.Y., Hong, S.B., Kim, H.K., Woo, T.K., and Kim, S.M., Patent US 10023821B2, 2018.

  46. Lee, J.D., Kim, H.J., Kim, S.R., Hong, S.Y., Park, H.O., Ha, M.K., Jeon, S.K., Ahn, H., and Woo, T.K., Patent US 20110064643A1, 2011.

  47. Stoporev, A.S., Semenov, A.P., Medvedev, V.I., Sizikov, A.A., Gushchin, P.A., Vinokurov, V.A., and Manakov, A.Y., J. Cryst. Growth, 2018, vol. 485, pp. 54–68. https://doi.org/10.1016/j.jcrysgro.2018.01.002

    Article  CAS  Google Scholar 

  48. Sa, J.-H., Melchuna, A., Zhang, X., Morales, R., Cameirao, A., Herri, J.-M., and Sum, A.K., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 8544–8552. https://doi.org/10.1021/acs.iecr.9b01029

    Article  CAS  Google Scholar 

  49. Gulkov, A.N., Gulkova, S., Zemenkov, Y.D., and Lapshin, V.D., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 357, article 012002. https://doi.org/10.1088/1757-899X/357/1/012002

  50. Lapshin, V.D. and Gulʼkov, A.N., Patent RU 2520220, 2014, Byull. Izobret., 2014, no. 17.

  51. Straume, E., Morales, R.E.M., and Sum, A.K., Energy Fuels, 2019, vol. 33, no. 1, pp. 1–15. https://doi.org/10.1021/acs.energyfuels.8b02816

    Article  CAS  Google Scholar 

  52. Lund, A., Lysne, D., Larsen, R., and Hjarbo, K.W., Patent US 6774276B1, 2004.

  53. LaChance, J.W., Starkey, M.G., and Bond, W.E., Patent US 9868910B2, 2018.

  54. Azarinezhad, R., Chapoy, A., Anderson, R., and Tohidi, B., Proc. 6th Int. Conf. on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10. 2008.

  55. Varfolomeev, M.A., Stoporev, A.S., Pavelʼev, R.S., and Semenov, M.E., Patent RU 2757196, 2021, Byull. Izobret., 2021, no. 29.

  56. Sowjanya, Y. and Prasad, P.S.R., J. Nat. Gas Sci. Eng., 2014, vol. 18, pp. 58–63. https://doi.org/10.1016/j.jngse.2014.02.001

    Article  CAS  Google Scholar 

  57. Tohidi, B., Danesh, A., Todd, A.C., Burgass, R.W., and Østergaard, K.K., Fluid Phase Equil., 1997, vol. 138, nos. 1–2, pp. 241–250. https://doi.org/10.1016/S0378-3812(97)00164-7

    Article  CAS  Google Scholar 

  58. Kutergin, O.B., Melnikov, V.P., and Nesterov, A.N., Dokl. Akad. Nauk, 1992, vol. 323, no. 3, pp. 549–553.

    CAS  Google Scholar 

  59. Du, J., Li, H., and Wang, L., Adv. Powder Technol., 2014, vol. 25, no. 4, pp. 1227–1233. https://doi.org/10.1016/j.apt.2014.06.002

    Article  CAS  Google Scholar 

  60. Veluswamy, H.P., Hong, Q.W., and Linga, P., Cryst. Growth Des., 2016, vol. 16, no. 10, pp. 5932–5945. https://doi.org/10.1021/acs.cgd.6b00997

    Article  CAS  Google Scholar 

  61. Bhattacharjee, G., Choudhary, N., Kumar, A., J. Nat. Gas Sci. Eng., 2016, vol. 35, pp. 1453–1462. https://doi.org/10.1016/j.jngse.2016.05.052

    Article  CAS  Google Scholar 

  62. Mohammad-Taheri, M., Moghaddam, A.Z., Nazari, K., and Zanjani, N.G., J. Nat. Gas Chem., 2012, vol. 21, no. 2, pp. 119–125. https://doi.org/10.1016/S1003-9953(11)60343-5

    Article  CAS  Google Scholar 

  63. Lee, J.D., Wu, H., and Englezos, P., Chem. Eng. Sci., 2007, vol. 62, no. 23, pp. 6548–6555. https://doi.org/10.1016/j.ces.2007.07.041

    Article  CAS  Google Scholar 

  64. Karaaslan, U. and Parlaktuna, M., Energy Fuels, 2002, vol. 16, pp. 1413–1416. https://doi.org/10.1021/ef020023u

    Article  CAS  Google Scholar 

  65. Al-Adel, S., Dick, J.A.G., El-Ghafari, R., and Servio, P., Fluid Phase Equil., 2008, vol. 267, no. 1, pp. 92–98. https://doi.org/10.1016/j.fluid.2008.02.012

    Article  CAS  Google Scholar 

  66. Lee, K., Lee, S.-H., and Lee, W., Int. J. Greenhouse Gas Control, 2013, vol. 14, pp. 15–24. https://doi.org/10.1016/j.ijggc.2013.01.001

    Article  CAS  Google Scholar 

  67. Zhang, B., Zheng, J., Yin, Z., Liu, C., Wu, Q., Wu, Q., Liu, C., Gao, X., and Zhang, Q., Fuel, 2018, vol. 233, pp. 94–102. https://doi.org/10.1016/j.fuel.2018.06.055

    Article  CAS  Google Scholar 

  68. Mohammadi, M., Haghtalab, A., and Fakhroueian, Z., J. Chem. Thermodyn., 2016, vol. 96, pp. 24–33. https://doi.org/10.1016/j.jct.2015.12.015

    Article  CAS  Google Scholar 

  69. Rahmati-Abkenar, M., Mehrdad, M., and Pahlavanzadeh, H., Chem. Eng. Res. Des., 2017, vol. 120, pp. 325–332. https://doi.org/10.1016/j.cherd.2017.02.023

    Article  CAS  Google Scholar 

  70. Mohammadi, A., Manteghian, M., Haghtalab, A., Mohammadi, A.H., and Rahmati-Abkenar, M., Chem. Eng. J., 2014, vol. 237, pp. 387–395. https://doi.org/10.1016/j.cej.2013.09.026

    Article  CAS  Google Scholar 

  71. Kang, S.-P. and Lee, J.-W., Chem. Eng. Sci., 2010, vol. 65, no. 5, pp. 1840–1845. https://doi.org/10.1016/j.ces.2009.11.027

    Article  CAS  Google Scholar 

  72. Park, T. and Kwon, T.-H., Environ. Sci. Тechnol., 2018, vol. 52, pp. 3267–3274, https://doi.org/10.1016/j.ces.2009.11.027

    Article  CAS  Google Scholar 

  73. Rogers, R.E., Kothapalli, C., Lee, M.S., and Woolsey, J.R., Can. J. Chem. Eng., 2003, vol. 81, no. 5, pp. 973–980. https://doi.org/10.1002/cjce.5450810508

    Article  CAS  Google Scholar 

  74. Nesterov, A.N., Reshetnikov, A.M., Manakov, A.Y., Rodionova, T.V., Paukshtis, E.A., Asanov, I.P., Bardakhanov, S.P., and Bulavchenko, A.I., J. Mol. Liq., 2015, vol. 204, pp. 118–125. https://doi.org/10.1016/j.molliq.2015.01.037

    Article  CAS  Google Scholar 

  75. Said, S., Govindaraj, V., Herri, J.-M., Ouabbas, Y., Khodja, M., Belloum, M., Sangwai, J.S., and Nagarajan, R., J. Nat. Gas Sci. Eng., 2016, vol. 32, pp. 95–108. https://doi.org/10.1016/j.jngse.2016.04.003

    Article  CAS  Google Scholar 

  76. Manakov, A.M., Penkov, N.V., Rodionova, T.V., Nesterov, A.N., and Fesenko, E.E., Russ. Chem. Rev., 2017, vol. 86, no. 9, pp. 845–869. https://doi.org/10.1070/RCR4720

    Article  CAS  Google Scholar 

  77. Nashed, O., Partoon, B., Lal, B., Sabil, K.M., and Shariff, A.M., J. Nat. Gas Sci. Eng., 2018, vol. 55, pp. 452–465. https://doi.org/10.1016/j.jngse.2018.05.022

    Article  CAS  Google Scholar 

  78. Najibi, H., Shayegan, M.M., and Heidary, H., J. Nat. Gas Sci. Eng., 2015, vol. 23, pp. 315–323. https://doi.org/10.1016/j.jngse.2015.02.009

    Article  CAS  Google Scholar 

  79. Nesterov, A.N., Reshetnikov, A.M., Manakov, A.Y., and Adamova, T.P., J. Energy Chem., 2017, vol. 26, pp. 808–814. https://doi.org/10.1016/j.jechem.2017.04.001

    Article  Google Scholar 

  80. Baek, S., Ahn, Y.H., Zhang, J., Min, J., Lee, H., and Lee, J.W., Appl. Energy, 2017, vol. 202, pp. 32–41. https://doi.org/10.1016/j.apenergy.2017.05.108

    Article  CAS  Google Scholar 

  81. Yin, Z.Y., Khurana, M., Tan, H.K., and Linga, P., Chem. Eng. J., 2018, vol. 342, pp. 9–29. https://doi.org/10.1016/j.cej.2018.01.120

    Article  CAS  Google Scholar 

  82. Fan, S., Yang, L., Wang, Y., Lang, X., Wen, Y., and Lou, X., Chem. Eng. Sci., 2014, vol. 106, pp. 53–59. https://doi.org/10.1016/j.ces.2013.11.032

    Article  CAS  Google Scholar 

  83. Wang, W.X., Bray, C.L., Adams, D.J., and Cooper, A.I., J. Am. Chem. Soc., 2008, vol. 130, pp. 11608–11609. https://doi.org/10.1021/ja8048173

    Article  CAS  PubMed  Google Scholar 

  84. Podenko, L.S., Drachuk, A.O., Molokitina, N.S., and Nesterov, A.N., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 2, pp. 255–261. https://doi.org/10.1134/S0036024418020188

    Article  CAS  Google Scholar 

  85. Carter, B.O., Wang, W.X., Adams, D.J., and Cooper, A.I., Langmuir, 2010, vol. 26, pp. 3186–3193. https://doi.org/10.1021/la903120p

    Article  CAS  PubMed  Google Scholar 

  86. Ding, A.L., Yang, L., Fan, S.S., and Lou, X., Chem. Eng. Sci., 2013, vol. 96, pp. 124–130. https://doi.org/10.1016/j.ces.2013.03.050

    Article  CAS  Google Scholar 

  87. Shi, B.H., Fan, S.S., and Lou, X., Chem. Eng. Sci., 2014, vol. 109, pp. 315–325. https://doi.org/10.1016/j.ces.2014.01.035

    Article  CAS  Google Scholar 

  88. Mel’nikov, V.P., Podenko, L.S., Drachuk, A.O., and Molokitina, N.S., Dokl. Chem., 2019, vol. 487, pp. 198–202. https://doi.org/10.1134/S0012500819070073

    Article  Google Scholar 

  89. Podenko, L.S., Drachuk, A.O., Molokitina, N.S., and Nesterov, A.N., J. Nat. Gas Sci. Eng., 2021, vol. 88, article 103811. https://doi.org/10.1016/j.jngse.2021.103811

  90. Molokitina, N.S. and Drachuk, A.O., J. Nat. Gas Sci. Eng., 2021, article 104339. https://doi.org/10.1016/j.jngse.2021.104339

  91. Yang, L., Lan, X., Liu, D., Cui, G., Dou, B., and Wang, J., Chem. Eng. J., 2019, vol. 374, pp. 802–810. https://doi.org/10.1016/j.cej.2019.05.219

    Article  CAS  Google Scholar 

  92. Linga, P. and Clarke, M.A., Energy Fuels, 2017, vol. 31, no. 1, pp. 1–13. https://doi.org/10.1021/acs.energyfuels.6b02304

    Article  CAS  Google Scholar 

  93. Varfolomeev, M.A., Fakhradian, A., Pavelʼev, R.S., Yarkovoi, V.V., Zaripova, Yu.F., and Semenov, M.E., Patent RU 2755790, 2021, Byull. Izobret., 2021, no. 27.

Download references

Funding

The study was funded by the subsidy given to the Kazan Federal University for implementation of the government assignment in the field of scientific activity (project FZSM-2021-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Varfolomeev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.E., Pavelyev, R.S., Stoporev, A.S. et al. State of the Art and Prospects for the Development of the Hydrate-based Technology for Natural Gas Storage and Transportation (A Review). Pet. Chem. 62, 127–140 (2022). https://doi.org/10.1134/S0965544122060019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122060019

Keywords:

Navigation