Skip to main content
Log in

Development of Cre-lox based multiple knockout system in Deinococcus radiodurans R1

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extremophilic bacterium Deinococcus radiodurans R1 has been considered as an attractive microorganism due to its remarkable tolerance to various external stresses. Considering the nature of D. radiodurans R1, it has potential as a platform microorganism for industrial applications, including biorefinery and bioremediation process. However, D. radiodurans R1 is well known for its hard genetic manipulation. Thus, much effort has been made to develop efficient genetic engineering tools for making D. radiodurans R1 suitable for industrial platform microorganism. Although a plasmid-based single gene knockout method has been reported, development of multiple gene knockout system has not yet been reported. Here we report, for the first time, Cre-lox based rapid and efficient multiple knockout method for metabolic engineering of D. radiodurans R1. Also, deletion of dr0053 gene was successfully achieved within seven days to make biofilm overproducing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Kumar and S. Prassad, Indian J. Microbiol., 51, 403 (2011).

    Article  CAS  Google Scholar 

  2. S. Singh, S. H. Kang, A. Mulchandani and W. Chen, Curr. Opin. Biotechnol., 19, 437 (2008).

    Article  CAS  Google Scholar 

  3. J. Esther, L. B. Sukla, N. Pradhan and S. Panda, Korean J. Chem. Eng., 31, 1 (2015).

    Article  Google Scholar 

  4. C. Roh, C. Kang and J. R. Lloyd, Korean J. Chem. Eng., 32, 1720 (2015).

    Article  CAS  Google Scholar 

  5. G. Stephanopoulos, ACS Synth. Biol., 1, 514 (2012).

    Article  CAS  Google Scholar 

  6. V. G. Vikramaditya, M. D. Mey, C. G. Lim, P. K. Ajikumar and G. Stephanopoulos, Metab. Eng., 14, 233 (2012).

    Article  Google Scholar 

  7. K. S. Makarova, L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin and M. J. Daly, Microbiol. Mol. Biol. Rev., 65, 44 (2001).

    Article  CAS  Google Scholar 

  8. R. Shashidhar, S. A. Kumar, H. S. Misra and J. R. Bandekar, Can. J. Microbiol., 56, 195 (2010).

    Article  CAS  Google Scholar 

  9. J. K. Grimsley, C. I. Masters, E. P. Clark and K. W. Minton, Int. J. Radiat. Biol., 60, 613 (1991).

    Article  CAS  Google Scholar 

  10. H. Brim, S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett and M. J. Daly, Nat. Biotechnol., 18, 85 (2000).

    Article  CAS  Google Scholar 

  11. H. Brim, J. P. Osborne, H. M. Kostandarithes, J. K. Fredrickson, L. P. Wacklett and M. J. Daly, Microbiology, 152, 2469 (2006).

    Article  CAS  Google Scholar 

  12. K. Abremski, R. Hoess and N. Sternberg, Cell, 32, 1301 (1983).

    Article  CAS  Google Scholar 

  13. R. Hoess and K. Abremski, J. Mol. Biol., 181, 351 (1985).

    Article  CAS  Google Scholar 

  14. H. Ohba, K. Satoh, T. Yanagisawa and I. Narumi, Gene, 363, 133 (2005).

    Article  CAS  Google Scholar 

  15. R. Meima and M. E. Lidstrom, Appl. Environ. Microbiol., 66, 3856 (2000).

    Article  CAS  Google Scholar 

  16. H. H. Nguyen, C. B. de la Tour, M. Toueille, F. Vannier, S. Sommer and P. Servant, Mol. Microbiol., 73, 240 (2009).

    Article  CAS  Google Scholar 

  17. K. Satoh, Z. Tu, H. Ohba and I. Narumi, Plasmid, 62, 1 (2009).

    Article  CAS  Google Scholar 

  18. D. Appukuttan, H. S. Seo, S. W. Jeong, S. H. Im, M. H. Joe, D. S. Song, J. J. Choi and S. Y. Lim, PLoS One, 10, e0118275 (2015).

    Article  Google Scholar 

  19. G. A. O’Toole, L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver and R. G. Kolter, Method Enzymol., 310, 91 (1999).

    Article  Google Scholar 

  20. B. R. Boles and A. R. Horswill, PLoS Pathog., 4, e1000052 (2008).

    Article  Google Scholar 

  21. B. E. Moseley and J. K. Setlow, Proc. Natl. Acad. Sci. U.S.A., 61, 176 (1968).

    Article  CAS  Google Scholar 

  22. J. M. Lambert, R. S. Bonger and M. Kleerebezem, Appl. Environ. Microbiol., 73, 1126 (2007).

    Article  CAS  Google Scholar 

  23. R. Dixit, Wasiullah,_D. Malaviya, K. Pandiyan, U. B. Singh, A. Sahu, R. Shukla, B. P. Singh, J. P. Rai, P. K. Sharma, H. Lade and D. Paul, Sustainability,, 7, 2189 (2015).

    Article  CAS  Google Scholar 

  24. M. Kolari, J. Nuutinen and M. S. Salkinoja-Salonen, J. Ind. Microbiol. Biotechnol., 27, 343 (2001).

    Article  CAS  Google Scholar 

  25. D. Slade and M. Radman, Microbiol. Mol. Biol. Rev., 75, 133 (2011).

    Article  CAS  Google Scholar 

  26. L. Lemee, E. Peuchant, M. Clerc, M. Brunner and H. Pfander, Tetrahedron, 53, 919 (1997).

    Article  CAS  Google Scholar 

  27. E. Gerber, R. Bernard, S. Castang, N. Chabot, F. Coze, A. Dreux-Zigha, E. Hauser, P. Hivin, P. Joseph, C. Lazarelli, G. Letellier, J. Olive and J.-P. Leonetti, J. Appl. Microbiol., 119, 1 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jun Choi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SW., Yang, J.E., Im, S. et al. Development of Cre-lox based multiple knockout system in Deinococcus radiodurans R1. Korean J. Chem. Eng. 34, 1728–1733 (2017). https://doi.org/10.1007/s11814-017-0082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0082-5

Keywords

Navigation