Skip to main content

Advertisement

Log in

Metabolic Engineering of Bacteria

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lessard P (1996) Metabolic engineering, the concept coalesces. Nat Biotechnol 14:1654–1655

    Article  PubMed  CAS  Google Scholar 

  2. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Van Maris AJA, Abbott DA, Bellissimi E, Vanden BJ, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, Van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90:391–418

    Article  PubMed  CAS  Google Scholar 

  4. Yang Y-T, Bennet GN, San KY (1998) Genetic and metabolic engineering. Electron J Biotechnol 1(3):134–141

    Article  Google Scholar 

  5. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  PubMed  CAS  Google Scholar 

  6. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537

    Article  PubMed  CAS  Google Scholar 

  7. Yazdani SS, Gonzalez R (2008) Engineering Escherichia Coli for the efficient conversion of glycerol to ethanol and coproducts. Metab Eng 10:340–351

    Article  CAS  Google Scholar 

  8. Gupta PK (2007) Metabolic engineering for over production of metabolites. Elem Biotechnol 458–470

  9. Lee FC, Rangaiph GP, Lee D (2010) Modeling and optimization of multi-product biosynthesis factory for multiple objectives. Metab Eng 12:251–267

    Article  PubMed  CAS  Google Scholar 

  10. Adrio JL, Demain AL (2006) Genetic improvement of process yielding microbial products. FEMS Microbiol 30(2):187–214

    Article  CAS  Google Scholar 

  11. Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentose phosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–29453

    Article  PubMed  CAS  Google Scholar 

  12. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64(1):34–50

    Article  PubMed  CAS  Google Scholar 

  13. Anesiadis N, Cluerr WR, Mahadevan R (2008) Dynamic metabolic engineering for increasing bioprocess productivity. Metab Eng 10:255–266

    Article  PubMed  CAS  Google Scholar 

  14. Seong-Tshool H et al (1997) Cloning and heterologous expression of the entire gene clusters for PD 116740 from Streptomyces strain WP 4669 and tetrangulol and tetrangomycin from Streptomyces rimosus NRRL 3016. J Bacteriol 179(2):470–476

    Google Scholar 

  15. Abd-el-Haleem D, Amara A, Zaki S, Abulhamad A, Abulreesh G (2007) Biosynthesis of biodegradable polyhydroxyalkanoate biopolymers in genetically modifies yeast. Int J Environ Sci Technol 4(4):513–520

    CAS  Google Scholar 

  16. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastics. Microbiol Mol Biol Rev 63(1):21–63

    PubMed  CAS  Google Scholar 

  17. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  PubMed  CAS  Google Scholar 

  18. Castelo R, Roverato A (2009) Reverse engineering molecular regulatory networks from microarray data with qp graphs. J Comput Biol 16(2):213–227

    Article  PubMed  CAS  Google Scholar 

  19. Valliyodan Babu, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:1–7

    Article  Google Scholar 

  20. Wesolowski J (2010) Antifungal compounds redirect metabolic pathways in yeasts: metabolites as indicators of modes of action. J Appl Microbiol 108:462–471

    Article  PubMed  CAS  Google Scholar 

  21. Wegkamp A et al (2010) Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1. Microb Cell Factor 9:100

    Article  CAS  Google Scholar 

  22. Krupinski VM, Robbers JE, Floss HG (1976) Physiological study of ergot: induction of alkaloid synthesis by tryptophan at the enzymatic level. J Bacteriol 125:158–165

    PubMed  CAS  Google Scholar 

  23. Haavik HI, Froyshov O (1982) On the role of l-leucine in the control of bacitracin formation by Bacillus licheniformis. In: Kleinkauf H, van Dohren H (eds) Peptide antibiotics: biosynthesis and functions. Walter de Gruyter & Co, Berlin, pp 155–159

    Google Scholar 

  24. DeLisa MP, Bentley WE (2002) Bacterial autoinduction: looking outside the cell for new metabolic engineering targets. Microb Cell Factor 1:5

    Article  Google Scholar 

  25. March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15:495–502

    Article  PubMed  CAS  Google Scholar 

  26. Falb M, Muller K, Konigsmaier L, Oberwinkler T, Horn P, Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196

    Article  PubMed  CAS  Google Scholar 

  27. Boghigian GA, Seth G, Kiss R, Pfeifer BA (2010) Metabolic flux analysis and pharmaceutical production. Metab Eng 12:81–95

    Article  PubMed  CAS  Google Scholar 

  28. Olano C, Lombi F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  PubMed  CAS  Google Scholar 

  29. Zhang K et al (2008) Expanding metabolism for biosynthesis of non natural alcohols. Proc Natl Acad Sci USA 105:20653–20658

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank P. P. Tyag Vallabh Swamiji to insist us in preparing the manuscript. This work was supported in part by Department of Biotechnology, Virani Science College, Rajkot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi R. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.R., Prasad, S. Metabolic Engineering of Bacteria. Indian J Microbiol 51, 403–409 (2011). https://doi.org/10.1007/s12088-011-0172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0172-8

Keywords

Navigation